
MariaDB optimizer
For “11.0”

MariaDB Server Fest
November 2022

Michael Widenius
CTO @ MariaDB

Talk overview

● This talk is about the optimizer features coming in the next main MariaDB release,
probably called 11.0.

● Why these changes were done
● I try to describe all “user visible” changes in the “improved MariaDB optimizer”

● Replace several rule based choices with cost based
● (A big part of the old optimizer was cost based, but not all...)

● Major cost changes
● Costs are now based on timing of engine sub operations and expressed in

microseconds instead of ‘key lookup’, ‘row lookup’ or ‘access a disk block’.
● User changeable optimizer costs
● Fixes in selectivity (chance of a row passing the WHERE clause) calculations.
● Optimizer trace changes
● When / why these changes matter to you

● It started with MDEV-26974 “Improve selectivity and related costs in optimizer”
 in September 2021

● The intention was to fix a selectivity issue where the optimizer could sometimes
calculate selectivity to be > 1.0

● While fixing this I discovered that there were a lot of other things that were “far
from optimal” that should be fixed.

● In August 2022, I concluded that the old costs were not good enough to be able
to calculate the best plan
● Changed costs to be in milliseconds and created a program, check_costs.pl, to

calculate and verify costs.
● Now, a bit more than one year later, most of the ‘critically needed issues’ are

fixed…
● The selectivity tree has more than 60 commits (a few very big ones).

Background for the optimizer changes

The intention of the optimizer changes
● Be able to find the ‘best table combination and best access plan’ for a query.

● The original optimizer cost model was not very good if there were no good
indexes.
● Replace most of the remaining rule based choices with cost based choices.
● Take into account that different engines have different characteristics

(Memory vs InnoDB)
● Allow the user to fine tune the optimizer costs for their environment.

● (Hopefully they never need to do that, but it is now possible)
● Easier to compare query costs and also quickly see ‘if a cost is reasonable’.

● Having costs in microseconds helps to verify if a cost is ‘totally wrong’
● Optimizer trace writes out a lot more information about the costs!

The intention for the future is to be able to enable all optimizer_switch options by
default! For this we needed a better cost model, like the new one, as a base!

Optimizer trace added to MariaDB 10.4
The new optimizer trace has made it possible to start improving the optimizer.
To use it one should do:

set optimizer_trace="enabled=on";
SELECT …
select * from information_schema.OPTIMIZER_TRACE;

In an mtr test (mariadb-test-run) one can (starting with 10.5) use --
optimizer_trace before a SELECT or EXPLAIN query that produces wrong
results, to find out what is different from before.

optimizer_trace has enabled me to start working on the biggest change in
optimizer cost calculation since MariaDB 10.3/10.5!

11.0 has much more information in the optimizer trace!

Selectivity (bug fix)
● Starting from MariaDB 10.4.1 has optimizer_use_condition_selectivity=4
● In some cases the selectivity calculation is wrong (selectivity becomes > 1) and

one gets a bad plan.
● Current workaround is to use optimizer_use_condition_selectivity=1 if a plan

is bad.

● Selectivity calculations are now fixed. There are now asserts in place in all
selectivity calculations that ensure this cannot happen again.

● The optimizer now uses the most optimistic (smallest number of rows)
access method when estimating rows count.
● One effect of this is that ‘explain extended’ now has a more accurate number for

 “filtered”.

Derived tables and union can now create distinct key
● Temporary derived tables are now creating unique keys to speed up searches.

Here is a diff from the commit: now eq_ref (unique key lookup) instead of ref

EXPLAIN UPDATE t1, t2 SET a = 10 WHERE a IN (SELECT * FROM (SELECT b FROM t2 ORDER BY b
LIMIT 2,2) x);
 id select_type table type possible_keys key key_len ref rows Extra
 1 PRIMARY t1 ALL NULL NULL NULL NULL 3 Using where
-1 PRIMARY <derived3> ref key0 key0 5 test.t1.a 2 FirstMatch(t1)
+1 PRIMARY <derived3> eq_ref distinct_key distinct_key 5 test.t1.a 1

 1 PRIMARY t2 ALL NULL NULL NULL NULL 3
 3 DERIVED t2 ALL NULL NULL NULL NULL 3 Using filesort

New cost calculations
● Cost calculations for filesort, Unique, filters, join_cache, materialization are

updated.
● The consequences for these are:

● MariaDB is more likely to use an index for order by
● MariaDB will use filters a bit more than before.
● Materialization costs are now a bit higher

● Cost of “Using index for group-by” corrected.
● MariaDB will use “index for group by” optimization more optimal now.

● The disk access cost is now assuming SSD!
● When counting disk accesses, we assume that all read rows are cached for the

duration of the query. If this calculation would not be done, the cost of joining a
big table with a small one would be unreasonable high!

The new storage engine costs
● Cost calculations changed from using ‘disk/row/index’ access to microseconds.

● As part of this, the base costs (table_scan, index_scan, key_look, row_lookup)
have been split into smaller parts:

select * from information_schema.optimizer_costs where engine="innodb"
 OPTIMIZER_DISK_READ_COST: 10.240000
OPTIMIZER_INDEX_BLOCK_COPY_COST: 0.035600
 OPTIMIZER_KEY_COMPARE_COST: 0.011361
 OPTIMIZER_KEY_COPY_COST: 0.015685
 OPTIMIZER_KEY_LOOKUP_COST: 0.791120
 OPTIMIZER_KEY_NEXT_FIND_COST: 0.099000
 OPTIMIZER_DISK_READ_RATIO: 0.020000
 OPTIMIZER_ROW_COPY_COST: 0.060870
 OPTIMIZER_ROW_LOOKUP_COST: 0.765970
 OPTIMIZER_ROW_NEXT_FIND_COST: 0.070130
 OPTIMIZER_ROWID_COMPARE_COST: 0.002653
 OPTIMIZER_ROWID_COPY_COST: 0.002653

Note that the above costs are in microseconds, while the query costs (in optimizer_trace) is in milliseconds!
Docs/optimizer_costs.txt explains in detail how the costs are calculated!

The new (important) SQL level costs
show variables like "optimizer%cost";

+---------------------------------+-----------+
| Variable_name | Value |
+---------------------------------+-----------+
| optimizer_disk_read_cost | 10.240000 |
...
| optimizer_where_cost | 0.032000 |
+---------------------------------+-----------+

show variables like "optimizer%ratio"

+---------------------------+----------+
| Variable_name | Value |
+---------------------------+----------+
| optimizer_disk_read_ratio | 0.020000 |
+---------------------------+----------+

Verifying the optimizer costs
(All data is in memory for this test)

check_costs.pl --engine=aria
…
Timing table access for query: table scan
select sum(l_quantity) from test.check_costs_aria
explain:
1 SIMPLE check_costs_aria ALL 1000000
table_scan time: 108.057814 ms cost-where: 107.3483 cost: 139.3483
…
Cost/time ratio for different scans types
table scan cost: 107.3483 time: 108.0578 cost/time: 0.9934
index scan cost: 98.1252 time: 88.2091 cost/time: 1.1124
range scan cost: 309.7452 time: 337.0256 cost/time: 0.9191
eq_ref_index_join cost: 499.5453 time: 495.4494 cost/time: 1.0083
eq_ref_cluster_join cost: 499.5453 time: 497.5671 cost/time: 1.0040
eq_ref_join cost: 711.1653 time: 762.0677 cost/time: 0.9332
eq_ref_btree cost: 711.1653 time: 760.3875 cost/time: 0.9353

Example of key read cost calculation
IO_AND_CPU_COST handler::keyread_time(index, ranges, rows)
Calculates the number of disk blocks that we expect to access when reading
trough one index, with a given set of ranges a given set of rows.
It also multiplies the number of blocks with INDEX_BLOCK_COPY_COST.

The full cost of the index read is then calculated in ha_keyread_time():
keyread_time() +
 ranges * KEY_LOOKUP_COST +
 (rows - ranges) * KEY_NEXT_FIND_COST;

For accepted rows when doing an index read, we have
ha_keyread_and_compare_time() which does:
ha_keyread_time() + rows * (KEY_COPY_COST + WHERE_COST)

Example of row read cost calculation
If we are doing reading a row trough a key, we have to use the cost of reading the row:

ha_keyread_time() + ha_rnd_pos_time()
Here is the actual code:

 virtual IO_AND_CPU_COST rnd_pos_time(ha_rows rows)
 {
 double r= rows2double(rows);
 return
 {
 r * ((stats.block_size + IO_SIZE -1)/IO_SIZE), // Blocks read
 r * INDEX_BLOCK_COPY_COST // Copy block from cache
 };
 }
 inline IO_AND_CPU_COST ha_rnd_pos_time(ha_rows rows)
 {
 IO_AND_CPU_COST cost= rnd_pos_time(rows);
 set_if_smaller(cost.io, (double) row_blocks()); // Limit the blocks to the number of blocks in the file
 cost.cpu+= rows2double(rows) * (ROW_LOOKUP_COST + ROW_COPY_COST);
 return cost;
 }

Rule based -> Cost based
● The decision to use an index (and which index) for resolving ORDER BY/GROUP

BY where only partly cost based before.
● The old optimizer would limit the number of ‘expected key lookups’ to 10% of

the number of rows. This would cause the optimizer to use an index to scan a big
part of a table when a full table scan would be much faster.
This code is now removed.

● InnoDB would limit the number of rows in a range to 50% of the total rows,
which would confuse the optimizer for big ranges. The cap is now removed.

● If there was a usable filter for an index, it was sometimes used without checking
the complete cost of the filter.

● ‘Aggregate distinct optimization with indexes’ is now cost based.
● “Using index for group-by (scanning)” → “Using index for group-by”

Other things
● A lot of small changes to improve performance

● Changed some critical functions to be inline
● Improved rowid_filter filling code
● More caching of values
● Simplified code (removed extra calls that were not needed)

● Many (!) more code comments to existing code.
● Some old MariadB bugs in Jira were solved by the new code.
● Some small improvements to LIMIT
● Indexes can now be used for ORDER BY/GROUP BY in sub queries (instead of

filesort)
● Aria tables now supports rowid_filtering

Some other plan changes
● We now prefer indexes with more used key parts if the number of resulting rows

is the same.
● Where key_part_1 = 1 and key_part_2 < 10

● For very small tables, index lookup is preferred over table scan
● This is mainly because of the mysql-run-test (mtr) test suite which has mostly

small tables.
● This can be changed by setting OPTIMIZER_SCAN_SETUP_COST=0
● Normally this should not matter for end users.

● Do not report in EXPLAIN scans on clustered primary keys as ‘Using index’.
● This is not an index scan, it is a table scan!
● Maybe we should instead report ‘Using clustered index’ ?

The most important new optimizer cost variables

optimizer_disk_read_ratio 0.020000 The chance that an engine-block is cached
optimizer_disk_read_cost 10.240000 Time to read a 4K block from an SSD
optimizer_where_cost 0.032000 Time to execute the WHERE clause
 This time is added to all ‘accepted’ rows
optimizer_scan_setup_cost 10.000000 Cost added to all full table or index scans

The above variables (in microseconds) will ensure that if tuning is needed for the new
cost calculations, one should be able to fix it by just adjusting one of the above variables
in the MariaDB config file.

For example, increasing optimizer_where_cost will cause the optimizer to choose plans
with less estimated rows.

Changing cost variables

All engine and “sql level” cost variables can be changed via mariadbd startup options, in
config files or dynamically using SQL.

set session optimizer_where_cost=1.0;
set global innodb.OPTIMIZER_DISK_READ_COST=100;

● The “default” engine contains the default costs for all storage engines.
● When a new engine is loaded, the default costs are taken from the “default” engine

and then the engine updates its own internal costs and adds the user configured costs.
● To keep things fast, engine specific costs are stored in the table definition

(TABLE_SHARE). This means that if one changes the cost for an engine, it will only take
effect when new, not previously cached tables are accessed.

● You can use flush tables to force the table to use the new costs at next access.

When optimizer cost calculation changes,
unexpected things can happen to existing applications

● The new optimizer should be able to do a better choice when to use table scan,
index scan, index_merge, hash and other join methods needed when key
lookup cannot be used.

● Most applications, which are properly using keys, should be unaffected.
● Simple queries will work as before
● Most complex queries (with many tables) should perform equal or better than

before.
● The new optimizer costs may need future tuning to be ‘perfect’ for most. If

needed, this will be done over a few MariaDB releases.
● As most tuning can be done by just adjusting the cost variables, this can be done

quickly with no code changes even by users.

When does the optimizer changes matter to you

● The new optimizer should be able to find a better plan
● If you are using queries with more than two tables
● If you have indexes with a lot of identical values
● If you are using ranges that cover more than 10% of a table

● … WHERE key between 1 and 1000 -- Table has values 1-2000
● If you have complex queries when not all used columns are or can be indexed

● In which case you may need to depend on selectivity to get the right plan
● If you are using queries mixing different storage engines

● Like using both InnoDB and Memory engine in the same query.
● If you have had to use FORCE INDEX to get a good plan.
● If using ANALYZE TABLE made your plans worse (or not good enough)
● If your queries have lots of derived tables (subselects)
● Using ORDER BY / GROUP BY that could be resolved via indexes

State of things

● All changes (except minor tuning based on input from user or performance testing) are
already done!

● The code can be found in the bb-10.11-selectivity-nov branch
● It will probably to be renamed next week to 11.0-alpha and changed to -beta by

the end of the month.
● The optimizer will probably be the only major change in this tree!
● We want the release to become ‘stable’ quickly and many testers would help!
● We encourage everyone to test this and give us feedback (through Jira) so that

we can fix any bugs ASAP! Please consider putting 11.0-beta as an extra slave to
your existing production and give us FEEDBACK!

A last note: Going through the optimizer code has given me a lot of ideas for cleanups that
could be done. This will be done in next major MariaDB releases.

Acknowledgments

● A big thanks to Sergei Petrunia for optimizer_trace and for reviews and always been
available to explain some of the optimizer internals to me!

● Thanks to Vicen iu Ciorbaru for adding cost calculations for filesort!ț
● Thanks to Andrew Hutchings for helping on the ColumnStore front.

Thank you

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

