

Optimizing Queries Using CTEs
and Window Functions

Vicențiu Ciorbaru
Software Engineer @ MariaDB Foundation

Agenda

■ What are Common Table Expressions (CTEs)?

■ What are Window Functions?

■ Practical use cases

■ Why are window functions fast?

■ Development status in MariaDB

What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

Keyword

Syntax

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

CTE Name

Syntax

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

CTE Body

Syntax

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ... CTE Usage

Syntax

What are CTEs?

CTEs are similar to derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

SELECT *
FROM (SELECT *

FROM employees
WHERE dept=”Engineering”) AS engineers

WHERE ...

What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

),
eu_engineers AS (

SELECT *
FROM engineers
WHERE country IN (”NL”,...)

)
SELECT *
FROM eu_engineers
WHERE ...

SELECT *
FROM (SELECT *
 FROM (SELECT *
 FROM employees
 WHERE dept=”Engineering”) AS engineers
 WHERE country IN (”NL”,...))
WHERE ...

What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

),
eu_engineers AS (

SELECT *
FROM engineers
WHERE country IN (”NL”,...)

)
SELECT *
FROM eu_engineers
WHERE ...

SELECT *
FROM (SELECT *
 FROM (SELECT *
 FROM employees
 WHERE dept=”Engineering”) AS engineers
 WHERE country IN (”NL”,...))
WHERE ...

Linear View Nested View

What are CTEs?

Example: Year-over-year comparisons

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,
 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

Summary on CTEs

■ Identified by the WITH clause.

■ Similar to derived tables in the FROM clause.

■ More expressive and provide cleaner code.

■ Can produce more efficient query plans.

CTE execution

Basic algorithm

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,

 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

● Materialize each CTE occurrence into
a Temporary Table

● Often Not optimal!

CTE optimization #1

CTE reuse

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,

 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

● Materialize each CTE occurrence into
a Temporary Table

We can reuse CTE
here!

CTE optimization #1

CTE reuse

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,

 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

● Materialize each distinct CTE
occurrence into a Temporary Table

Materialize only
once!

CTE optimization #1

CTE reuse

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,

 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

● Materialize each distinct CTE
occurrence into a Temporary Table

● Not compatible with other
optimizations.

Materialize only
once!

CTE optimization #2

CTE merging

WITH engineers AS (
 SELECT * FROM EMPLOYEES
 WHERE
 dept='Development'
)
SELECT
 ...
FROM
 engineers E,
 support_cases SC
WHERE
 E.name=SC.assignee and
 SC.created='2017-04-10' and
 E.location='New York'

Requirements:
● CTE is used in a JOIN, no GROUP

BY, DISTINCT, etc.

CTE optimization #2

CTE merging

WITH engineers AS (
 SELECT * FROM EMPLOYEES
 WHERE
 dept='Development'
)
SELECT
 ...
FROM
 engineers E,
 support_cases SC
WHERE
 E.name=SC.assignee and
 SC.created='2017-04-10' and
 E.location='New York'

SELECT
 ...
FROM
 employees E,
 support_cases SC
WHERE
 E.name=SC.assignee and
 SC.created='2017-04-10' and
 E.location='New York'
 E.dept='Development'

Requirements:
● CTE is used in a JOIN, no GROUP

BY, DISTINCT, etc.

CTE optimization #2

CTE merging

WITH engineers AS (
 SELECT * FROM EMPLOYEES
 WHERE
 dept='Development'
)
SELECT
 ...
FROM
 engineers E,
 support_cases SC
WHERE
 E.name=SC.assignee and
 SC.created='2017-04-10' and
 E.location='New York'

SELECT
 ...
FROM
 employees E,
 support_cases SC
WHERE
 E.name=SC.assignee and
 SC.created='2017-04-10' and
 E.location='New York'
 E.dept='Development'

● CTE merged into parent join.
● Now optimizer can pick any query

plan.
● Same algorithm is used for VIEWS

(ALGORITHM = MERGE)

Requirements:
● CTE is used in a JOIN, no GROUP

BY, DISTINCT, etc.

CTE optimization #3

Condition pushdown

WITH sales_per_year AS (
 SELECT
 year(order.date) AS year
 sum(order.amount) AS sales
 FROM
 order
 GROUP BY
 year
)
SELECT *
FROM sales_per_year
WHERE
 year in ('2015','2016')

CTE optimization #3

Condition pushdown

WITH sales_per_year AS (
 SELECT
 year(order.date) AS year
 sum(order.amount) AS sales
 FROM
 order
 GROUP BY
 year
)
SELECT *
FROM sales_per_year
WHERE
 year in ('2015','2016')

Requirements:
● Merging is not possible (GROUP BY

exists)
● Conditions in outer select

Requirements:
● Merging is not possible (GROUP BY

exists)
● Conditions in outer select

CTE optimization #3

Condition pushdown

WITH sales_per_year AS (
 SELECT
 year(order.date) AS year
 sum(order.amount) AS sales
 FROM
 order
 GROUP BY
 year
)
SELECT *
FROM sales_per_year
WHERE
 year in ('2015','2016')

WITH sales_per_year AS (
 SELECT
 year(order.date) as year
 sum(order.amount) as sales
 FROM
 order
 WHERE
 year in ('2015','2016')
 GROUP BY
 year
)
SELECT *
FROM sales_per_year

CTE optimization #3

Condition pushdown

● Makes temporary tables smaller.

● Can filter out whole groups.

● Works for derived tables and views.

● Implemented as a GSoC project:

“Pushing conditions into non-mergeable

views and derived tables in MariaDB”

WITH sales_per_year AS (
 SELECT
 year(order.date) as year
 sum(order.amount) as sales
 FROM
 order
 WHERE
 year in ('2015','2016')
 GROUP BY
 year
)
SELECT *
FROM sales_per_year

CTE Optimizations Summary

CTE Merge Condition
pushdown

CTE reuse

MariaDB 10.2 ✔ ✔ ✘

MS SQL Server ✔ ✔ ✘

PostgreSQL ✘ ✘ ✔

MySQL
8.0.0-labs-optimizer

✔ ✘ ✔*

● Merge and condition pushdown are most important
○ Can not be used at the same time as CTE reuse

● PostgreSQL considers CTEs optimization barriers
● MySQL (8.0) tries merging, otherwise reuse

What are window functions?

■ Similar to aggregate functions

○ Computed over a sequence of rows

■ But they provide one result per row

○ Like regular functions!

■ Identified by the OVER clause.

What are window functions?

SELECT

email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------------------------+------------+-----------+--------------+
| email | first_name | last_name | account_type |
+------------------------+------------+-----------+--------------+
admin@boss.org	Admin	Boss	admin
bob.carlsen@foo.bar	Bob	Carlsen	regular
eddie.stevens@data.org	Eddie	Stevens	regular
john.smith@xyz.org	John	Smith	regular
root@boss.org	Root	Chief	admin
+------------------------+------------+-----------+--------------+

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

This order is not deterministic!

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
2	admin@boss.org	Admin	Boss	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
5	john.smith@xyz.org	John	Smith	regular
4	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

This is also valid!

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
5	admin@boss.org	Admin	Boss	admin
4	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
2	john.smith@xyz.org	John	Smith	regular
1	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

And this one...

What are window functions?

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

Now only this one is valid!

What are window functions?

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

How do we “group” by account type?

What are window functions?

SELECT
row_number() over (PARTITION BY account_type ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY account_type, email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	root@boss.org	Root	Chief	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
2	eddie.stevens@data.org	Eddie	Stevens	regular
3	john.smith@xyz.org	John	Smith	regular
+------+------------------------+------------+-----------+--------------+

row_number() resets for every
partition

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING),

FROM data_points
ORDER BY time;

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING),

FROM data_points
ORDER BY time;

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 6 PRECEDING
 AND 6 FOLLOWING),

FROM data_points
ORDER BY time;

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
10:00:00	2	
11:00:00	5	
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
10:00:00	2	
11:00:00	5	
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
11:00:00	5	
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
11:00:00	5	
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
12:00:00	4	
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4)
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
| 12:00:00 | 4 | 16 | (2 + 5 + 4 + 4 + 1)
13:00:00	4	
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4)
| 13:00:00 | 4 | 9 | (4 + 4 + 1)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
| 12:00:00 | 4 | 16 | (2 + 5 + 4 + 4 + 1)
| 13:00:00 | 4 | 19 | (5 + 4 + 4 + 1 + 5)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4)
| 13:00:00 | 4 | 9 | (4 + 4 + 1)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
| 12:00:00 | 4 | 16 | (2 + 5 + 4 + 4 + 1)
| 13:00:00 | 4 | 19 | (5 + 4 + 4 + 1 + 5)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

Every new row adds a value and
removes a value!

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4)
| 13:00:00 | 4 | 9 | (4 + 4 + 1)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
| 12:00:00 | 4 | 16 | (2 + 5 + 4 + 4 + 1)
| 13:00:00 | 4 | 19 | (5 + 4 + 4 + 1 + 5)
14:00:00	1	
15:00:00	5	
15:00:00	2	
15:00:00	2	
+----------+-------+------+

So how do frames work?

We can do “on-line” computation!

What are window functions?

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 1 PRECEDING
 AND 1 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 7 | (2 + 5)
| 11:00:00 | 5 | 11 | (2 + 5 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4)
| 13:00:00 | 4 | 9 | (4 + 4 + 1)
| 14:00:00 | 1 | 10 | (4 + 1 + 5)
| 15:00:00 | 5 | 8 | (1 + 5 + 2)
| 15:00:00 | 2 | 9 | (5 + 2 + 2)
| 15:00:00 | 2 | 4 | (2 + 2)
+----------+-------+------+

SELECT
time, value
sum(value) OVER (

ORDER BY time
ROWS BETWEEN 2 PRECEDING
 AND 2 FOLLOWING)

FROM data_points
ORDER BY time;

+----------+-------+------+
| time | value | sum |
+----------+-------+------+
| 10:00:00 | 2 | 11 | (2 + 5 + 4)
| 11:00:00 | 5 | 15 | (2 + 5 + 4 + 4)
| 12:00:00 | 4 | 16 | (2 + 5 + 4 + 4 + 1)
| 13:00:00 | 4 | 19 | (5 + 4 + 4 + 1 + 5)
| 14:00:00 | 1 | 16 | (4 + 4 + 1 + 5 + 2)
| 15:00:00 | 5 | 14 | (4 + 1 + 5 + 2 + 2)
| 15:00:00 | 2 | 10 | (1 + 5 + 2 + 2)
| 15:00:00 | 2 | 9 | (5 + 2 + 2)
+----------+-------+------+

So how do frames work?

Scenario 1 - Regular SQL

SELECT timestamp, transaction_id, customer_id, amount,
FROM transactions
ORDER BY customer_id, timestamp;

Given a set of bank transactions,
compute the account balance after each transaction.

+---------------------+----------------+-------------+--------+
| timestamp | transaction_id | customer_id | amount |
+---------------------+----------------+-------------+--------+
2016-09-01 10:00:00	1	1	1000
2016-09-01 11:00:00	2	1	-200
2016-09-01 12:00:00	3	1	-600
2016-09-01 13:00:00	5	1	400
2016-09-01 12:10:00	4	2	300
2016-09-01 14:00:00	6	2	500
2016-09-01 15:00:00	7	2	400
+---------------------+----------------+-------------+--------+

Scenario 1 - Regular SQL

SELECT timestamp, transaction_id, customer_id, amount,
 (SELECT sum(amount)
 FROM transactions AS t2
 WHERE t2.customer_id = t1.customer_id AND
 t2.timestamp <= t1.timestamp) AS balance
FROM transactions AS t1
ORDER BY customer_id, timestamp;

Given a set of bank transactions,
compute the account balance after each transaction.

+---------------------+----------------+-------------+--------+---------+
| timestamp | transaction_id | customer_id | amount | balance |
+---------------------+----------------+-------------+--------+---------+
2016-09-01 10:00:00	1	1	1000	1000
2016-09-01 11:00:00	2	1	-200	800
2016-09-01 12:00:00	3	1	-600	200
2016-09-01 13:00:00	5	1	400	600
2016-09-01 12:10:00	4	2	300	300
2016-09-01 14:00:00	6	2	500	800
2016-09-01 15:00:00	7	2	400	1200
+---------------------+----------------+-------------+--------+---------+

Scenario 1 - Window Functions

SELECT timestamp, transaction_id, customer_id, amount,
 sum(amount) OVER (PARTITION BY customer_id
 ORDER BY timestamp
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW) AS balance
FROM transactions AS t1
ORDER BY customer_id, timestamp;

Given a set of bank transactions,
compute the account balance after each transaction.

+---------------------+----------------+-------------+--------+---------+
| timestamp | transaction_id | customer_id | amount | balance |
+---------------------+----------------+-------------+--------+---------+
2016-09-01 10:00:00	1	1	1000	1000
2016-09-01 11:00:00	2	1	-200	800
2016-09-01 12:00:00	3	1	-600	200
2016-09-01 13:00:00	5	1	400	600
2016-09-01 12:10:00	4	2	300	300
2016-09-01 14:00:00	6	2	500	800
2016-09-01 15:00:00	7	2	400	1200
+---------------------+----------------+-------------+--------+---------+

Scenario 1 - Performance
Given a set of bank transactions,

compute the account balance after each transaction.

#Rows Regular SQL
(seconds)

Regular SQL + Index
(seconds)

Window Functions
(seconds)

10 000 0.29 0.01 0.02

100 000 2.91 0.09 0.16

1 000 000 29.1 2.86 3.04

10 000 000 346.3 90.97 43.17

100 000 000 4357.2 813.2 514.24

Practical Use Cases - Scenario 2

■ “Top-N” queries

■ Retrieve the top 5 earners by department.

Scenario 2 - Regular SQL

SELECT dept, name, salary
FROM employee_salaries
ORDER BY dept;

+-------+----------+--------+
| dept | name | salary |
+-------+----------+--------+
Sales	John	200
Sales	Tom	300
Sales	Bill	150
Sales	Jill	400
Sales	Bob	500
Sales	Axel	250
Sales	Lucy	300
Eng	Tim	1000
Eng	Michael	2000
Eng	Andrew	1500
Eng	Scarlett	2200
Eng	Sergei	3000
Eng	Kristian	3500
Eng	Arnold	2500
Eng	Sami	2800
+-------+----------+--------+

Retrieve the top 5 earners by department.

Scenario 2 - Regular SQL

SELECT dept, name, salary
FROM employee_salaries AS t1
WHERE (SELECT count(*)
 FROM employee_salaries AS t2
 WHERE t1.name != t2.name AND
 t1.dept = t2.dept AND
 t2.salary > t1.salary) < 5
ORDER BY dept, salary DESC;

+-------+----------+--------+
| dept | name | salary |
+-------+----------+--------+
Eng	Kristian	3500
Eng	Sergei	3000
Eng	Sami	2800
Eng	Arnold	2500
Eng	Scarlett	2200
Sales	Bob	500
Sales	Jill	400
Sales	Lucy	300
Sales	Tom	300
Sales	Axel	250
+-------+----------+--------+

Retrieve the top 5 earners by department.

Scenario 2 - Regular SQL

SELECT dept, name, salary
FROM employee_salaries AS t1
WHERE (SELECT count(*)
 FROM employee_salaries AS t2
 WHERE t1.name != t2.name AND
 t1.dept = t2.dept AND
 t2.salary > t1.salary) < 5
ORDER BY dept, salary DESC;

+-------+----------+--------+
| dept | name | salary |
+-------+----------+--------+
Eng	Kristian	3500
Eng	Sergei	3000
Eng	Sami	2800
Eng	Arnold	2500
Eng	Scarlett	2200
Sales	Bob	500
Sales	Jill	400
Sales	Lucy	300
Sales	Tom	300
Sales	Axel	250
+-------+----------+--------+

Retrieve the top 5 earners by department.

What if I want a “rank” column?

Scenario 2 - Regular SQL

SELECT
(SELECT count(*) + 1
 FROM employee_salaries as t2
 WHERE t1.name != t2.name and
 t1.dept = t2.dept and
 t2.salary > t1.salary)
 AS ranking,
dept, name, salary

FROM employee_salaries AS t1
WHERE (SELECT count(*)
 FROM employee_salaries AS t2
 WHERE t1.name != t2.name AND
 t1.dept = t2.dept AND
 t2.salary > t1.salary) < 5
ORDER BY dept, salary DESC;

+---------+-------+----------+--------+
| ranking | dept | name | salary |
+---------+-------+----------+--------+
1	Eng	Kristian	3500
2	Eng	Sergei	3000
3	Eng	Sami	2800
4	Eng	Arnold	2500
5	Eng	Scarlett	2200
1	Sales	Bob	500
2	Sales	Jill	400
3	Sales	Lucy	300
3	Sales	Tom	300
5	Sales	Axel	250
+---------+-------+----------+--------+

Retrieve the top 5 earners by department.

What if I want a “rank” column?

Scenario 2 - Window Functions

WITH salary_ranks AS (
 SELECT
 rank() OVER (

PARTITION BY dept
ORDER BY salary DESC)

AS ranking,
 dept, name, salary
 FROM employee_salaries;
)
SELECT *
FROM salary_ranks
WHERE ranking <= 5
ORDER BY dept, ranking;

+---------+-------+----------+--------+
| ranking | dept | name | salary |
+---------+-------+----------+--------+
1	Eng	Kristian	3500
2	Eng	Sergei	3000
3	Eng	Sami	2800
4	Eng	Arnold	2500
5	Eng	Scarlett	2200
6	Eng	Michael	2000
7	Eng	Andrew	1500
8	Eng	Tim	1000
1	Sales	Bob	500
2	Sales	Jill	400
3	Sales	Tom	300
3	Sales	Lucy	300
5	Sales	Axel	250
6	Sales	John	200
7	Sales	Bill	150
+---------+-------+----------+--------+

Retrieve the top 5 earners by department.

Scenario 2 - Window Functions

WITH salary_ranks AS (
 SELECT
 rank() OVER (

PARTITION BY dept
ORDER BY salary DESC)

AS ranking,
 dept, name, salary
 FROM employee_salaries
 WHERE ranking <= 5;
)
SELECT *
FROM salary_ranks
WHERE ranking <= 5
ORDER BY dept, ranking;

+---------+-------+----------+--------+
| ranking | dept | name | salary |
+---------+-------+----------+--------+
1	Eng	Kristian	3500
2	Eng	Sergei	3000
3	Eng	Sami	2800
4	Eng	Arnold	2500
5	Eng	Scarlett	2200
6	Eng	Michael	2000
7	Eng	Andrew	1500
8	Eng	Tim	1000
1	Sales	Bob	500
2	Sales	Jill	400
3	Sales	Tom	300
3	Sales	Lucy	300
5	Sales	Axel	250
6	Sales	John	200
7	Sales	Bill	150
+---------+-------+----------+--------+

Retrieve the top 5 earners by department.

Scenario 2 - Window Functions

WITH salary_ranks AS (
 SELECT
 rank() OVER (

PARTITION BY dept
ORDER BY salary DESC)

AS ranking,
 dept, name, salary
 FROM employee_salaries
 WHERE ranking <= 5;
)
SELECT *
FROM salary_ranks
WHERE ranking <= 5
ORDER BY dept, ranking;

+---------+-------+----------+--------+
| ranking | dept | name | salary |
+---------+-------+----------+--------+
1	Eng	Kristian	3500
2	Eng	Sergei	3000
3	Eng	Sami	2800
4	Eng	Arnold	2500
5	Eng	Scarlett	2200
6	Eng	Michael	2000
7	Eng	Andrew	1500
8	Eng	Tim	1000
1	Sales	Bob	500
2	Sales	Jill	400
3	Sales	Tom	300
3	Sales	Lucy	300
5	Sales	Axel	250
6	Sales	John	200
7	Sales	Bill	150
+---------+-------+----------+--------+

Retrieve the top 5 earners by department.

No Window Functions in
the WHERE clause :(

Scenario 2 - Window Functions

WITH salary_ranks AS (
 SELECT
 rank() OVER (

PARTITION BY dept
ORDER BY salary DESC)

AS ranking,
 dept, name, salary
 FROM employee_salaries
)
SELECT *
FROM salary_ranks
WHERE ranking <= 5
ORDER BY dept, ranking;

+---------+-------+----------+--------+
| ranking | dept | name | salary |
+---------+-------+----------+--------+
1	Eng	Kristian	3500
2	Eng	Sergei	3000
3	Eng	Sami	2800
4	Eng	Arnold	2500
5	Eng	Scarlett	2200
1	Sales	Bob	500
2	Sales	Jill	400
3	Sales	Lucy	300
3	Sales	Tom	300
5	Sales	Axel	250
+---------+-------+----------+--------+

Retrieve the top 5 earners by department.

Scenario 2 - Performance

Retrieve the top 5 earners by department.

#Rows Regular SQL
(seconds)

Regular SQL + Index
(seconds)

Window Functions
(seconds)

2 000 1.31 0.14 0.00

20 000 123.6 12.6 0.02

200 000 10000+ 1539.79 0.21

2 000 000 5.61

20 000 000 76.04

Window functions summary

■ Can help eliminate expensive subqueries.

■ Can help eliminate self-joins.

■ Make queries more readable.

■ Make (some) queries faster.

Window Functions in MariaDB
■ We support:

○ ROW_NUMBER, RANK, DENSE_RANK,

PERCENT_RANK, CUME_DIST, NTILE

○ FIRST_VALUE, LAST_VALUE, NTH_VALUE,

LEAD, LAG

○ All regular aggregate functions except

GROUP_CONCAT

Window Functions in MariaDB
■ We do not (yet) support:

○ Time interval range-type frames

○ DISTINCT clause

○ GROUP_CONCAT function

○ Advanced window functions such as:

PERCENTILE_CONT, PERCENTILE_DISC

Thank You!

Contact me at:
vicentiu@mariadb.org
vicentiu@ciorbaru.io

Blog: vicentiu.ciorbaru.io

mailto:vicentiu@mariadb.org
mailto:vicentiu@mariadb.org
mailto:vicentiu@ciorbaru.io
mailto:vicentiu@ciorbaru.io

