MariaDB’
FOUNDATION

Optimizing Queries Using CTEs
and Window Functions

Vicentiu Ciorbaru
Software Engineer @ MariaDB Foundation

© 2017 MariaDB Foundation MOHQ D BO

J Agenda

m \What are Common Table Expressions (CTEs)?
m What are Window Functions?

m Practical use cases

m Why are window functions fast?

m Development status in MariaDB

© 2017 MariaDB Foundation MOriO D B®

J What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering

)

)
SELECT *

FROM engineers
WHERE ...

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT * <::ﬁ Keyword

FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT * ﬁ CTE Name

FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MOriO D B

J What are CTES?

Syntax

WITH engineers AS (

SELECT *
FROM employees
WHERE dept:”Engineer\ing» ﬁ CTE BOdy

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ... CTE Usage

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

CTEs are similar to derived tables.

WITH engineers AS (SELECT *
SELECT * FROM (SELECT *
FROM employees FROM employees
WHERE dept="Engineering” WHERE dept="”Engineering”) AS engineers
) WHERE ...
SELECT *
FROM engineers
WHERE ..

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (SELECT *

SELECT * FROM (SELECT *

FROM employees FROM (SELECT *

WHERE dept="Engineering” FROM employees
) WHERE dept="Engineering”) AS engineers
eu_engineers AS (WHERE country IN (”NL”,...))

SELECT * WHERE ...

FROM engineers
WHERE country IN (”NL”,...)
)
SELECT *
FROM eu_engineers
WHERE ..

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering”
)
eu_engineers AS (
SELECT *
FROM engineers
WHERE country IN (”NL”,...)
)
SELECT *
FROM eu_engineers
WHERE ..

Linear View

SELECT *
FROM (SELECT *

FROM (SELECT *

FROM employees

WHERE dept="Engineering”) AS engineers
WHERE country IN (”NL”,...))

WHERE ...

Nested View

© 2017 MariaDB Foundation MOriO D B

J What are CTEs?

Example: Year-over-year comparisons

WITH sales_product_year AS (SELECT *

SELECT FROM
product, sales _product_year CUR,
year(ship_date) as year, sales_product_year PREV,
SUM(price) as total amt WHERE

FROM CUR.product = PREV.product AND
item_sales CUR.year = PREV.year + 1 AND

GROUP BY CUR.total _amt > PREV.total amt

product, year

© 2017 MariaDB Foundation MOriO D B

J Summary on CTEs

m ldentified by the WITH clause.
m Similar to derived tables in the FROM clause.
m More expressive and provide cleaner code.

m Can produce more efficient query plans.

© 2017 MariaDB Foundation MOriO D B®

CTE execution

Basic algorithm

WITH sales_product_year AS (e Materialize each CTE occurrence into

SELECT
product, — a Temporary Table
year(ship_date) as year,
SUM(price) as total amt —]

FROM e Often Not optimal!

item_sales
GROUP BY
product, year

)

SELECT *
FROM
sales product_year CUR,

sales _product_year PREV,

WHERE
CUR.product = PREV.product AND
CUR.year = PREV.year + 1 AND
CUR.total _amt > PREV.total_amt

MariaDB

© 2017 MariaDB Foundation

J CTE optimization #1

WITH sales_product_year AS (
SELECT
product,
year(ship_date) as year,
SUM(price) as total amt
FROM
item_sales
GROUP BY
product, year

)

SELECT *
FROM
sales product_year CUR,

sales _product_year PREV,

WHERE
CUR.product = PREV.product AND
CUR.year = PREV.year + 1 AND
CUR.total _amt > PREV.total_amt

CTE reuse
E—
E—

We can reuse CTE
here!

a Temporary Table

© 2017 MariaDB Foundation

e Materialize each CTE occurrence into

MariaDB

J CTE optimization #1

CTE reuse

WITH sales_product_year AS (e Materialize each distinct CTE

SELECT _
product, occurrence into a Temporary Table
year(ship_date) as year, >
SUM(price) as total amt

FROM
item_sales
GROUP BY
product, year

)

SELECT *
FROM
sales product_year CUR,

Materialize only
once!

sales _product_year PREV,

WHERE
CUR.product = PREV.product AND
CUR.year = PREV.year + 1 AND
CUR.total _amt > PREV.total_amt

MariaDB

© 2017 MariaDB Foundation

CTE optimization #1

CTE reuse

WITH sales_product_year AS (e Materialize each distinct CTE

SELECT)
product, occurrence into a Temporary Table
year(ship_date) as year, i ;
e e :: > ° Not_ cc_)mpatlble with other
FROM optimizations.

item_sales

GROUP BY
product, year

)

SELECT *
FROM
sales product_year CUR, Materialize only

once!

sales _product_year PREV,

WHERE
CUR.product = PREV.product AND
CUR.year = PREV.year + 1 AND
CUR.total _amt > PREV.total_amt

MariaDB

© 2017 MariaDB Foundation

J CTE optimization #2

CTE merging

WITH engineers AS (
SELECT * FROM EMPLOYEES
WHERE

dept="'Development’

)
SELECT

FROM
engineers E,
support_cases SC

WHERE
E.name=SC.assignee and
SC.created="'2017-04-10"' and
E.location="New York'

Requirements:

e CTE isusedin a JOIN, no GROUP
BY, DISTINCT, etc.

© 2017 MariaDB Foundation MOriO D B®

CTE optimization #2

CTE merging

WITH engineers AS (SELECT

SELECT * FROM EMPLOYEES

WHERE FROM

dept="'Development' employees E,

) support_cases SC
SELECT WHERE

cen N| E.name=SC.assignee and
FROM SC.created='2017-04-10"' and

engineers E, " E.location="New York'

support_cases SC E.dept="Development’
WHERE

E.name=SC.assignee and
SC.created='2017-04-10"' and
E.location="New York'

Requirements:

e CTE is usedin a JOIN, no GROUP
BY, DISTINCT, etc.

© 2017 MariaDB Foundation MOriO D B

J CTE optimization #2

CTE merging
WITH engineers AS (SELECT
SELECT * FROM EMPLOYEES “o
WHERE FROM

dept="'Development'

)
SELECT

FROM

engineers E,
support_cases SC

WHERE
E.name=SC.assignee and
SC.created="'2017-04-10"' and
E.location="New York'

Requirements:
e CTE is usedin a JOIN, no GROUP
BY, DISTINCT, etc.

© 2017 MariaDB Foundation MOriO D B®

employees E,
support_cases SC

WHERE
E.name=SC.assignee and
SC.created='2017-04-10"' and
E.location="New York'
E.dept="'Development’

e CTE merged into parent join.

e Now optimizer can pick any query
plan.

e Same algorithm is used for VIEWS
(ALGORITHM = MERGE)

J CTE optimization #3

Condition pushdown

WITH sales per_year AS (

SELECT
year(order.date) AS year
sum(order.amount) AS sales

FROM
order

GROUP BY
year

)
SELECT *
FROM sales per_year

WHERE
year in ('2015','2016")

© 2017 MariaDB Foundation MOriO D B

J CTE optimization #3

Condition pushdown

WITH sales per_year AS (
SELECT
year(order.date) AS year
sum(order.amount) AS sales
FROM
order
GROUP BY
year
)
SELECT *
FROM sales per_year

WHERE
year in ('2015','2016")

Requirements:
e Merging is not possible (GROUP BY

exists)

e Conditions in outer select
© 2017 MariaDB Foundation MOriO D B

J CTE optimization #3

Condition pushdown

WITH sales per_year AS (WITH sales _per_year AS (
SELECT

SELECT
year(order.date) as year

year(order.date) AS year
sum(order.amount) AS sales sum(order.amount) as sales

FROM FROM
order order
GROUP BY N WHERE
year year in ('2015','2016")
) ’{ GROUP BY
SELECT * year
FROM sales per_year)
WHERE SELECT *

year in ('2015','2016") FROM sales per_year

Requirements:
e Merging is not possible (GROUP BY

exists)

e Conditions in outer select
© 2017 MariaDB Foundation MOriO D B®

J CTE optimization #3

Condition pushdown

e Makes temporary tables smaller. WITH sales_per_year AS (
SELECT

e Can filter out whole groups. year(order.date) as year
sum(order.amount) as sales

e \Works for derived tables and views. FROM
order
WHERE
year in ('2015','2016")
e Implemented as a GSoC project: GROUP BY
year
)

SELECT *
“Pushing conditions into non-mergeable | FRoM sales_per_year

views and derived tables in MariaDB”

© 2017 MariaDB Foundation MOriO D B®

J CTE Optimizations Summary

CTE Merge Condition CTE reuse
pushdown
MariaDB 10.2 v v X
MS SQL Server / V X
PostgreSQL X X v
MySQL v X V"

8.0.0-labs-optimizer

e Merge and condition pushdown are most important
o Can not be used at the same time as CTE reuse

e PostgreSQL considers CTEs optimization barriers

e MySQL (8.0) tries merging, otherwise reuse

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

m Similar to aggregate functions

o Computed over a sequence of rows
m But they provide one result per row

o Like regular functions!

m ldentified by the OVER clause.

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

Let’s start with a “function like” example

SELECT

email, first_name,
last_name, account_type
FROM users
ORDER BY email;

e dommm e R T +
| email | first _name | last_name | account_type |
T Hmmmmm - Hmmmmmm - Hmmmmm e +
admin@boss.org	Admin	Boss	admin
bob.carlsen@foo.bar	Bob	Carlsen	regular
eddie.stevens@data.org	Eddie	Stevens	regular
john.smith@xyz.org	John	Smith	regular
root@boss.org	Root	Chief	admin
e dommm e R T +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

This order is not deterministic!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

This is also valid!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
2	admin@boss.org	Admin	Boss	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
5	john.smith@xyz.org	John	Smith	regular
4	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

And this one...
+--2-- R e T dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
5	admin@boss.org	Admin	Boss	admin
4	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
2	john.smith@xyz.org	John	Smith	regular
1	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

Now only this one is valid!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

How do we “group” by account type?

o= e R R L +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- T fmmmmm - fmmmmmm - Hmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
o= e R R T +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (PARTITION BY account_type ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY account_type, email;

row_number() resets for every

partition
+--2-- R e T dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	root@boss.org	Root	Chief	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
2	eddie.stevens@data.org	Eddie	Stevens	regular
3	john.smith@xyz.org	John	Smith	regular
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 10] — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

~0.5-]

~1.0-

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
—O.5i
1.0
Time
SELECT Sensor Data
time , Va lue 10] — Raw Data — Smoothed Average
avg(value) over (ORDER BY time]
05
)>
FROM data_points 3 .
g

ORDER BY time;

-0.5

1.0

Time

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
-0.5
1.0
Time
SELECT Sensor Data
t j_me , Vva lue 10] — Raw Data — Smoothed Average
avg(value) over (ORDER BY time]
ROWS BETWEEN 3 PRECEDING 05.]
AND 3 FOLLOWING),
FROM data_points E .
g

ORDER BY time;

-0.5

1.0

Time

© 2017 MariaDB Foundation MOHQ D BO

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
—O.Si
1.0
Time
SELECT Sensor Data
time , Va lue 10] — Raw Data 2x Smoothed Average
avg(value) over (ORDER BY time \f\/\
ROWS BETWEEN 6 PRECEDING 05; M
AND 6 FOLLOWING),] A

FROM data_points
ORDER BY time;

P
<’>
Ny
=
/‘

N

Time

© 2017 MariaDB Foundation MOriO D B

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;
t--mmmmm - +------- +------ + $--mmmmm - +------- +------ +
| time | value | sum | | time | value | sum |
it +------- +------ + e +------- +------ +
10:00:00	2			10:00:00	2	
11:00:00	5			11:00:00	5	
12:00:00	4			12:00:00	4	
13:00:00	4			13:00:00	4	
14:00:00	1			14:00:00	1	
15:00:00	5			15:00:00	5	
15:00:00	2			15:00:00	2	
15:00:00	2			15:00:00	2	
R T +------- +------ + T +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;
to-mmmmmmm- +------- +------ + R e +------ +
| time | value | sum | | time | value | sum |
R TR $------ + R $-----o- $------ +
| 10:00:00 | 2 | 7 | (2 + 5) | 10:00:00 | 2 | 11 | (2 +5+ 4)
11:00:00	5			11:00:00	5	
12:00:00	4			12:00:00	4	
13:00:00	4			13:00:00	4	
14:00:00	1			14:00:00	1	
15:00:00	5			15:00:00	5	
15:00:00	2			15:00:00	2	
15:00:00	2			15:00:00	2	
R +------- +------ + d---mmmmmm- +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;
to-mmmmmmm- +------- +------ + R e +------ +
| time | value | sum | | time | value | sum |
R TR $------ + R $-----o- $------ +
| 10:00:00 | 2 | 7] (2 +5) | 10:00:00 | 2 11| (2+5+4)
| 11:00:00 | 5| 11| (2 +5 +4) | 11:00:00 | 5| 15| (2+5+4+4)
12:00:00	4			12:00:00	4	
13:00:00	4			13:00:00	4	
14:00:00	1			14:00:00	1	
15:00:00	5			15:00:00	5	
15:00:00	2			15:00:00	2	
15:00:00	2			15:00:00	2	
R +------- +------ + d---mmmmmm- +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;
to-mmmmmmm- +------- +------ + R e +------ +
| time | value | sum | | time | value | sum |
R TR $------ + R $-----o- $------ +
| 10:00:00 | 2 | 7 | (2 +5) | 10:00:00 | 2 | 11 | (2 +5+ 4)
| 11:00:00 | 5| 11| (2 +5 + 4) | 11:00:00 | 5| 15| (2 + 5+ 4 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4) | 12:00:00 | 4 | 16 | (2 +5+4+4+1)
13:00:00	4			13:00:00	4	
14:00:00	1			14:00:00	1	
15:00:00	5			15:00:00	5	
15:00:00	2			15:00:00	2	
15:00:00	2			15:00:00	2	
R +------- +------ + d---mmmmmm- +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;
to-mmmmmmm- +------- +------ + R e +------ +
| time | value | sum | | time | value | sum |
R TR $------ + R $-----o- $------ +
| 10:00:00 | 2 | 7 | (2 + 5) | 10:00:00 | 2 | 11 | (2 +5 + 4)
| 11:00:00 | 5] 11] (2 + 5+ 4) | 11:00:00 | 5] 15| (2 + 5+ 4 + 4)
| 12:00:00 | 4 | 13 | (5 + 4 + 4) | 12:00:00 | 4 | 16 | (2 +5+4+4+1)
| 13:00:00 | 4 | 9| (4+4+1) | 13:00:00 | 4| 19| (5+4+4+1+05)
14:00:00	1			14:00:00	1	
15:00:00	5			15:00:00	5	
15:00:00	2			15:00:00	2	
15:00:00	2			15:00:00	2	
R +------- +------ + d---mmmmmm- +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;

Every new row adds a value and

PR removes a value! PR PRI PR +

| time | value | sum | | time | value | sum |

+------- - - +------- +------ + +------ - - +------- +------ +

| 10:00:00 | 2 | 7 | (2 + 5) | 10:00:00 | 2 | 11 | (2 +5 + 4)

| 11:00:00 | 5] 11] (2 + 5+ 4) | 11:00:00 | 5] 15| (2 + 5+ 4 + 4)

| 12:00:00 | 4 | 13 | (5 + 4 + 4) | 12:00:00 | 4 | 16 | (2 +5+4+4+1)
| 13:00:00 | 4 | 9| (4+4+1) | 13:00:00 | 4| 19| (5+4+4+1+05)
| 14:00:00 | 1| | | 14:00:00 | 1| |

| 15:00:00 | 5 | | | 15:00:00 | 5 | |

| 15:00:00 | 2 | | | 15:00:00 | 2 | |

| 15:00:00 | 2 | | | 15:00:00 | 2 | |

+---------- +------- +------ + +------- - +------- +------ +

© 2017 MariaDB Foundation MOriO D B®

J What are window functions?

So how do frames work?

SELECT SELECT
time, value time, value
sum(value) OVER (sum(value) OVER (
ORDER BY time ORDER BY time
ROWS BETWEEN 1 PRECEDING ROWS BETWEEN 2 PRECEDING
AND 1 FOLLOWING) AND 2 FOLLOWING)
FROM data_points FROM data_points
ORDER BY time; ORDER BY time;

We can do “on-line” computation!

Fo-mmmm- e Fo-mm--- +----=-- +
| time | value | sum | | time | value | sum |

e e +----=-- + L Fo-mm--- +----=-- +

| 10:00:00 | 2 | 7 | (2 + 5) | 10:00:00 | 2 | 11 | (2 +5 + 4)

| 11:00:00 | 5] 11] (2 + 5+ 4) | 11:00:00 | 5] 15| (2 + 5+ 4 + 4)

| 12:00:00 | 4 | 13 | (5 + 4 + 4) | 12:00:00 | 4 | 16 | (2 +5+4+4+1)
| 13:00:00 | 4 | 9| (4+4+1) | 13:00:00 | 4| 19| (5+4+4+1+05)
| 14:00:00 | 1| | | 14:00:00 | 1| |

| 15:00:00 | 5 | | | 15:00:00 | 5 | |

| 15:00:00 | 2 | | | 15:00:00 | 2 | |

| 15:00:00 | 2 | | | 15:00:00 | 2 | |

e e +----=-- + e e e +

© 2017 MariaDB Foundation MOriO D B®

J What are

SELECT
time, value
sum(value) OVER (
ORDER BY time
ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING)
FROM data_points
ORDER BY time;

Hmmmm e Hmmmmm - Hmm-—-- +
| time | value | sum |

Hmmmm e Hmmmm - Hmm-m-- +

| 10:00:00 | 2 | 7 | (2 +5
| 11:00:00 | 5| 11| (2+5
| 12:00:00 | 4 | 13 | (5 + 4
| 13:00:00 | 4 | 9| (4 + 4
| 14:00:00 | 1| 10| @4+1
| 15:00:00 | 5 | 8| (1+5
| 15:00:00 | 2] 9] (5+2
| 15:00:00 | 2 | 4 | (2 + 2
Hmmmmm e Hmmmmm - tmm-—-- +

A g

N

window functions?

So how do frames work?

SELECT
time, value
sum(value) OVER (
ORDER BY time
ROWS BETWEEN 2 PRECEDING
AND 2 FOLLOWING)
FROM data_points
ORDER BY time;

e Fo-mm--- +----=-- +

| time | value | sum |

L Fo-mm--- +----=-- +

| 10:00:00 | 2 | 11 | (2 +5
+ 4) | 11:00:00 | 5] 15| (2 + 5
+ 4) | 12:00:00 | 4 | 16 | (2 +5
+ 1) | 13:00:00 | 4| 19| (5+4
+ 5) | 14:00:00 | 1| 16| (4 +4
+ 2) | 15:00:00 | 5| 14 | (4 +1
+ 2) | 15:00:00 | 2| 10| (@ +5

| 15:00:00 | 2 | 9 | (5 + 2

e e e +

© 2017 MariaDB Foundation

N

4)
4 + 1)
1+5)
5+ 2)
2 + 2)
2)

+ + 4+ + + + + +
NNV R DBMDBD
+ + + + + +

g

MariaDB

J Scenario 1 - Regular SQL

Given a set of bank transactions,
compute the account balance after each transaction.

SELECT timestamp, transaction_id, customer_id, amount,
FROM transactions
ORDER BY customer_id, timestamp;

T fommmmemmememe——aa- Fmmmmmmmme—ea- Fommmm—- +
| timestamp | transaction_id | customer_id | amount |
fmmmm e fmmmmmm e fmmmmmm e Hmmmm - +
2016-09-01 10:00:00	1	1	1000
2016-09-01 11:00:00	2	1	-200
2016-09-01 12:00:00	3	1	-600
2016-09-01 13:00:00	5	1	400
2016-09-01 12:10:00	4	2	300
2016-09-01 14:00:00	6	2	see
2016-09-01 15:00:00	7	2	400
fmmmm e fmmmmmm e fmmmmmm e Hmmmm - +

© 2017 MariaDB Foundation MOriO D B®

J Scenario 1 - Regular SQL

Given a set of bank transactions,
compute the account balance after each transaction.

SELECT timestamp, transaction_id, customer_id, amount,
(SELECT sum(amount)
FROM transactions AS t2
WHERE t2.customer_id = tl.customer_id AND
t2.timestamp <= tl.timestamp) AS balance
FROM transactions AS t1
ORDER BY customer_id, timestamp;

T Hommmmmmmmeeeeaas Fommmmmm—aaa- N N T +
| timestamp | transaction_id | customer_id | amount | balance |
G ECE TR Hmmm e Hmmmmm - Hmmmm - Hmmmmmmm o +
2016-09-01 10:00:00	1	1	1000	1000
2016-09-01 11:00:00	2	1] -200	800	
2016-09-01 12:00:00	3	1	-600	200
2016-09-01 13:00:00	5	1	400	600
2016-09-01 12:10:00	4	2	300	300
2016-09-01 14:00:00	6	2	see	800
2016-09-01 15:00:00	7	2	400	1200
G ECE TR Hmmm e Hmmmmm - Hmmmm - Hmmmmmmm o +

© 2017 MariaDB Foundation MOriO D B®

J Scenario 1 - Window Functions

Given a set of bank transactions,
compute the account balance after each transaction.

SELECT timestamp, transaction_id, customer_id, amount,
sum(amount) OVER (PARTITION BY customer id
ORDER BY timestamp
ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW) AS balance
FROM transactions AS t1
ORDER BY customer_id, timestamp;

T Hommmmmmmmeeeeaas Fommmmmm—aaa- N N T +
| timestamp | transaction_id | customer_id | amount | balance |
G ECE TR Hmmm e Hmmmmm - Hmmmm - Hmmmmmmm o +
2016-09-01 10:00:00	1	1	1000	1000
2016-09-01 11:00:00	2	1] -200	800	
2016-09-01 12:00:00	3	1	-600	200
2016-09-01 13:00:00	5	1	400	600
2016-09-01 12:10:00	4	2	300	300
2016-09-01 14:00:00	6	2	see	800
2016-09-01 15:00:00	7	2	400	1200
G ECE TR Hmmm e Hmmmmm - Hmmmm - Hmmmmmmm o +

© 2017 MariaDB Foundation MOriO D B®

J Scenario 1 - Performance

Given a set of bank transactions,
compute the account balance after each transaction.

#Rows Regular SQL Regular SQL + Index | Window Functions
(seconds) (seconds) (seconds)
10 000 0.29 0.01 0.02
100 000 2.91 0.09 0.16
1 000 000 29.1 2.86 3.04
10 000 000 346.3 90.97 43.17
100 000 000 4357.2 813.2 514.24

© 2017 MariaDB Foundation MOriO D B®

J Practical Use Cases - Scenario 2

m “Top-N" queries

m Retrieve the top 5 earners by department.

© 2017 MariaDB Foundation MOriO D B

J Scenario 2 - Regular SQL

Retrieve the top 5 earners by department.

SELECT dept, name, salary Ho-m---- Hommmm- - Ho----- - +
FROM employee salaries | dept | name | salary |
Hmmmmm - Hmmmmm - Hmmmmmm - +
ORDER BY dept; | sales | John | 200 |
Sales	Tom	300
sales	Bill	150
sales	Jill	400
sales	Bob	500
sales	Axel	250
Sales	Lucy	300
Eng	Tim	1000
Eng	Michael	2000
Eng	Andrew	1500
Eng	Scarlett	2200
Eng	Sergei	3000
Eng	Kristian	3500
Eng	Arnold	2500
Eng	Sami	2800
Hmmmmm - Hmmmmm - Hmmmmmm - +

© 2017 MariaDB Foundation MOriO D B®

J Scenario 2 - Regular SQL

Retrieve the top 5 earners by department.

SELECT dept, name, salary +------- H---------- +-------- +
FROM employee salaries AS t1 | dept | name | salary |
e el +------ - +

WHERE (SELECT count(*) . Utng | keistian | 3500 |
FROM employee _salaries AS t2 | Eng | Sergei | 3000 |

WHERE tl.name != t2.name AND | Eng | Sami | 2800 |
tl.dept = t2.dept AND | Eng | Arnold | 2500 |

t2.salary > tl.salary) < 5 | Eng | Scarlett | 2200 |

ORDER BY dept, salary DESC; | Sales | Bob | 500 |
| sales | Jill | 400 |

| sales | Lucy | 300 |

| Sales | Tom | 300 |

| Sales | Axel | 250 |

e t---mmm - +-------- +

© 2017 MariaDB Foundation MOriO D B

J Scenario 2 - Regular SQL

Retrieve the top 5 earners by department.

SELECT dept, name, salary +------- H---------- +-------- +
FROM employee salaries AS t1 | dept | name | salary |
* e el +------ - +

WHERE (SELECT count(*) . | Eng | Kristian | 3500 |
FROM employee salaries AS t2 | Eng | Sergei | 3000 |

WHERE tl.name != t2.name AND | Eng | Sami | 2800 |
tl.dept = t2.dept AND | Eng | Arnold | 2500 |

t2.salary > tl.salary) < 5 | Eng | Scarlett | 2200 |

ORDER BY dept, salary DESC; | Sales | Bob | 500 |
| sales | Jill | 400 |

| Ssales | Lucy | 300 |

| Sales | Tom | 300 |

| Sales | Axel | 250 |

e t---mmm - +-------- +

What if | want a “rank” column?

© 2017 MariaDB Foundation MOriO D B®

J Scenario 2 - Regular SQL

Retrieve the top 5 earners by department.

SELECT Fo--mmmme- Fommmmes Fommmmmmmes Fommmmmms +
(SELECT count(*) + 1 | ranking | dept | name | salary |
FROM employee salaries as t2 T """" i'T'é;é'"ﬂ"k;i;;i;;"r"';;éé'T
WHERE tl.name != t2.name and | 2 | Eng | Sergei | 3000
tl.dept = t2.dept and | 3 | Eng | sami | 2800 |
t2.salary > tl.salary) | 4 | Eng | Arnold | 2500
AS ranking, | 5 | Eng | Scarlett | 2200 |
dept, name, salary | 1 | sales | Bob | 500 |
FROM employee salaries AS t1 I gI 2:122} Eiii I ggg}
WHERE (SELECT count(*) | 3 | sales | Tom | 300 |
FROM employee_salaries AS t2 | 5 | Sales | Axel | 250 |
WHERE tl.name != t2.name AND fmm e bmmm e Fmmmmmm e P +
tl.dept = t2.dept AND

t2.salary > tl.salary) < 5

What if | want a “rank” column?
ORDER BY dept, salary DESC;

© 2017 MariaDB Foundation MO” O D B

Scenario 2 - Window Functions

Retrieve the top 5 earners by department.

Hmmmmm——-- tmmm——-- Hmmmmmmm e Hmmmmmm - +
SELECT | ranking | dept | name | salary |
rank() OVER (M R e *

| 1 | Eng | Kristian | 3500 |

PARTITION BY dept | 2 | Eng | Sergei | 3000 |

ORDER BY salary DESC) | 3 | Eng | sami | 2800 |

AS ranking, | 4 | Eng | Arnold | 2500 |
dept, name, salary | 5 | Eng | Scarlett | 2200 |
FROM employee_salaries; | 6 | Eng | Michael | 2000 |
| 7 | Eng | Andrew | 1500 |

| 8 | Eng | Tim | 1000 |

| 1 | Sales | Bob | 500 |

| 2 | sales | 3Jill | 400 |

| 3 | Sales | Tom | 300 |

| 3 | Sales | Lucy | 300 |

| 5 | Sales | Axel | 250 |

| 6 | Sales | John | 200 |

| 7 | sales | Bill | 150 |

Hmmmmmm - tmmmm - Hmmmmm e Hmmmm - +

© 2017 MariaDB Foundation MOriO D B

Scenario 2 - Window Functions

Retrieve the top 5 earners by department.

Hmmmmm——-- tmmm——-- Hmmmmmmm e Hmmmmmm - +
SELECT | ranking | dept | name | salary |
rank() OVER (M R e *

| 1 | Eng | Kristian | 3500 |

PARTITION BY dept | 2 | Eng | Sergei | 3000 |

ORDER BY salary DESC) | 3 | Eng | sami | 2800 |

AS ranking, | 4 | Eng | Arnold | 2500 |
dept, name, salary | 5 | Eng | Scarlett | 2200 |
FROM employee_salaries | 6 | Eng | Michael | 2000 |
WHERE ranking <= 5; | 7 | Eng | Andrew | 1500 |
| 8 | Eng | Tim | 1000 |

| 1 | Sales | Bob | 500 |

| 2 | sales | 3Jill | 400 |

| 3 | Sales | Tom | 300 |

| 3 | Sales | Lucy | 300 |

| 5 | Sales | Axel | 250 |

| 6 | Sales | John | 200 |

| 7 | sales | Bill | 150 |

Hmmmmmm - tmmmm - Hmmmmm e Hmmmm - +

© 2017 MariaDB Foundation MOriO D B

Scenario 2 - Window Functions

Retrieve the top 5 earners by department.

Hmmmmm——-- tmmm——-- Hmmmmmmm e Hmmmmmm - +
SELECT | ranking | dept | name | salary |
rank() OVER (M R e *

| 1 | Eng | Kristian | 3500 |

PARTITION BY dept | 2 | Eng | Sergei | 3000 |

ORDER BY salary DESC) | 3 | Eng | sami | 2800 |

AS ranking, | 4 | Eng | Arnold | 2500 |
dept, name, salary | 5 | Eng | Scarlett | 2200 |
FROM employee salaries | 6 | Eng | Michael | 2000 |
. . : . : | 7 | Eng | Andrew | 1500 |

WHERE ranking <= 55 No Window Functions in | g | Eng | Tim | 1leoo |
the WHERE clause :(| 1 | sales | Bob | 500 |

| 2 | sales | 3Jill | 400 |

| 3 | Sales | Tom | 300 |

| 3 | Sales | Lucy | 300 |

| 5 | Sales | Axel | 250 |

| 6 | Sales | John | 200 |

| 7 | sales | Bill | 150 |

Hmmmmmm - tmmmm - Hmmmmm e Hmmmm - +

© 2017 MariaDB Foundation MOriO D B

J Scenario 2 - Window Functions

Retrieve the top 5 earners by department.

WITH salary_ranks AS (+oommo--- +oo--o-- LREEEEEEEEE LREEE LR +
SELECT | ranking | dept | name | salary |
rank() OVER (M Foommes Foommm e N
| 1 | Eng | Kristian | 3500 |
PARTITION BY dept | 2 | Eng | sergei | 3000 |
ORDER BY salary DESC) | 3 | Eng | sami | 2800 |
AS ranking, | 4 | Eng | Arnold | 2500 |
dept, name, salary | 5 | Eng | Scarlett | 2200 |
FROM employee_salaries I ;I 2:%:2} gg?l I Zgg}
)

| 3 | sales | Lucy | 300 |

k
SELECT | 3 | Sales | Tom | 300 |
FROM salary_ ranks | 5 | sales | Axel | 250 |
WHERE ranking <= 5 I P oo oo +

ORDER BY dept, ranking;

© 2017 MariaDB Foundation MOriO D B

J Scenario 2 - Performance

Retrieve the top 5 earners by department.

#Rows Regular SQL Regular SQL + Index | Window Functions
(seconds) (seconds) (seconds)
2 000 1.31 0.14 0.00
20 000 123.6 12.6 0.02
200 000 10000+ 1539.79 0.21
2 000 000 5.61
20 000 000 76.04

© 2017 MariaDB Foundation MOriO D B®

J Window functions summary

m Can help eliminate expensive subqueries.
m Can help eliminate self-joins.
m Make queries more readable.

m Make (some) queries faster.

© 2017 MariaDB Foundation MOriO D B®

/] Window Functions in MariaDB

m We support:
o ROW_NUMBER, RANK, DENSE_RANK,
PERCENT_RANK, CUME_DIST, NTILE
o FIRST_VALUE, LAST _VALUE, NTH_ VALUE,
LEAD, LAG
o All regular aggregate functions except
GROUP_CONCAT

© 2017 MariaDB Foundation MOriO D B®

/] Window Functions in MariaDB

m \We do not (yet) support:
o Time interval range-type frames
o DISTINCT clause
o GROUP_CONCAT function
o Advanced window functions such as:

PERCENTILE_CONT, PERCENTILE_DISC

© 2017 MariaDB Foundation MOriO D B®

Thank You!

Contact me at:
vicentiu@mariadb.org
vicentiu@ciorbaru.io

Blog: vicentiu.ciorbaru.io

mailto:vicentiu@mariadb.org
mailto:vicentiu@mariadb.org
mailto:vicentiu@ciorbaru.io
mailto:vicentiu@ciorbaru.io

