
© 2017 MariaDB Foundation
* *

Memory barriers in C

Sergey Vojtovich
Software Engineer @ MariaDB Foundation

© 2017 MariaDB Foundation

Agenda

● Normal: overview, problem, Relaxed

● Advanced: Acquire, Release

● Nightmare: Acquire_release, Consume

● Hell: Sequentially consistent

● Summoning Cthulhu: Atomic thread fence

© 2017 MariaDB Foundation

Abbreviations
#define RELAXED MY_MEMORY_ORDER_RELAXED
#define CONSUME MY_MEMORY_ORDER_CONSUME
#define ACQUIRE MY_MEMORY_ORDER_ACQUIRE
#define RELEASE MY_MEMORY_ORDER_RELEASE
#define ACQ_REL MY_MEMORY_ORDER_ACQ_REL
#define SEQ_CST MY_MEMORY_ORDER_SEQ_CST

#define load my_atomic_load32_explicit
#define store my_atomic_store32_explicit
#define fas my_atomic_fas32_explicit
#define add my_atomic_add32_explicit
#define cas my_atomic_cas32_strong_explicit

#define fence std::atomic_thread_fence

/* Global variables */
uint32_t a= 0, b= 0, c= 0, d= 0, result= 0, ready= 0, stage= 0;
char *str= NULL;

/* Thread variables */
uint32_t v1, v2, o;

© 2017 MariaDB Foundation

The problem

a= 1;
v1= b;
c= 2;
v2= d;

Code

© 2017 MariaDB Foundation

The problem

a= 1;
v1= b;
c= 2;
v2= d;

Code
v2= d;
v1= b;
a= 1;
c= 2;

Compiler

© 2017 MariaDB Foundation

The problem

a= 1;
v1= b;
c= 2;
v2= d;

Code
v2= d;
v1= b;
a= 1;
c= 2;

Compiler
v2= d;
c= 2;
a= 1;
v1= b;

CPU

© 2017 MariaDB Foundation

while (ready != 1);
assert(result == 42);

The Problem
Thread 1 Thread 2

result= 42;
ready= 1;

© 2017 MariaDB Foundation

while (ready != 1);
assert(result == 42);

The Problem
Thread 1 Thread 2

result= 42;
ready= 1;

Re-ordered by
compiler or CPU

© 2017 MariaDB Foundation

while (ready != 1);
assert(result == 42);

The Problem
Thread 1 Thread 2

ready= 1;

result= 42;

© 2017 MariaDB Foundation

while (ready != 1);
assert(result == 42);

The Problem
Thread 1 Thread 2

result= 42;
ready= 1;

Re-ordered by
compiler or CPU

© 2017 MariaDB Foundation

assert(result == 42);

while (ready != 1);

The Problem
Thread 1 Thread 2

result= 42;
ready= 1;

© 2017 MariaDB Foundation

while (ready != 1);
assert(result == 42);

The Problem
Thread 1 Thread 2

Re-ordered by
compiler or CPU

result= 42;
ready= 1;

Re-ordered by
compiler or CPU

© 2017 MariaDB Foundation

assert(result == 42);

while (ready != 1);

The Problem
Thread 1 Thread 2

ready= 1;

result= 42;

© 2017 MariaDB Foundation

Rationale

Memory barriers (jointly with atomic operations) are

intended to make data changes visible in concurrent

threads.

© 2017 MariaDB Foundation

API

Memory barrier can be issued along with atomic op
my_atomic_store32_explicit(&a, 0, MY_MEMORY_ORDER_RELAXED);

or on its own (not available in MariaDB API)
std::atomic_thread_fence(std::memory_order_relaxed);

Note: thread fence is not supposed to be used alone, it
must be accompanied by appropriate atomic operation.

© 2017 MariaDB Foundation

Memory barriers

● relaxed

● consume

● acquire

● release

● acquire_release

● sequentially consistent (default)

© 2017 MariaDB Foundation

Default memory order
#define my_atomic_load32(a)
 my_atomic_load32_explicit(a, MY_MEMORY_ORDER_SEQ_CST)

#define my_atomic_store32(a, b)
 my_atomic_store32_explicit(a, b, MY_MEMORY_ORDER_SEQ_CST)

#define my_atomic_fas32(a, b)
 my_atomic_fas32_explicit(a, b, MY_MEMORY_ORDER_SEQ_CST)

#define my_atomic_add32(a, b)
 my_atomic_add32_explicit(a, b, MY_MEMORY_ORDER_SEQ_CST)

#define my_atomic_cas32(a, b, c)
 my_atomic_cas32_strong_explicit(a, b, c, MY_MEMORY_ORDER_SEQ_CST,
 MY_MEMORY_ORDER_SEQ_CST)

© 2017 MariaDB Foundation

Memory barriers by strength

1. sequentially consistent

2. acquire_release

4. relaxed

3. release
3.1 acquire

3.2 consume

© 2017 MariaDB Foundation

Relaxed memory order

a= 1;
v1= b;

store(&ready, 1, RELAXED);

c= 1;
v2= d;

Atomic operation with Relaxed memory barrier

guarantees atomicity, but doesn’t impose any

synchronization or ordering constraints on other loads

or stores.

Relaxed barrier

© 2017 MariaDB Foundation

Relaxed memory order
Valid with any atomic operation
b= load(&a, RELAXED);
store(&a, 1, RELAXED);
b= fas(&a, 1, RELAXED);
b= add(&a, 1, RELAXED);
b= cas(&a, &o, 1, RELAXED, RELAXED);

fence(RELAXED); // no-op

© 2017 MariaDB Foundation

Relaxed memory order

Example
thd->query_id= my_atomic_add64_explicit(&global_query_id, 1,
 MY_MEMORY_ORDER_RELAXED);

Example
while (load(&a, RELAXED) != 1);
fence(ACQUIRE);

Example
cas(&a, &o, 1, ACQUIRE, RELAXED);

© 2017 MariaDB Foundation

Release memory order

a= 1;
v1= b;

store(&ready, 1, RELEASE);

c= 1;
v2= d;

Loads and stores before Release can not be reordered

after Release.

Loads and stores after Release can be reordered

before Release.

Release barrier

© 2017 MariaDB Foundation

Release memory order

a= 1;
v1= b;

store(&ready, 1, RELEASE);

c= 1;
v2= d;

Not same as write barrier!

a= 1;
v1= b;

smp_wmb();

c= 1;
v2= d;

Release barrier Write barrier

© 2017 MariaDB Foundation

Release memory order

result= 42;

store(&ready, 1, RELEASE);

Meaningless alone!

while (ready != 1);
assert(result == 42);

Thread 1 Thread 2

© 2017 MariaDB Foundation

Release memory order

result= 42;

store(&ready, 1, RELEASE);

Meaningless alone!

assert(result == 42);

while (ready != 1);

Thread 1 Thread 2

© 2017 MariaDB Foundation

Release memory order
Valid with atomic store or atomic read-modify-write
store(&a, 1, RELEASE);
b= fas(&a, 1, RELEASE);
b= add(&a, 1, RELEASE);
b= cas(&a, &o, 1, RELEASE, RELEASE);

fence(RELEASE); // must be followed by RELAXED atomic store or RMW

Not valid with atomic load
b= load(&a, RELEASE); // undefined, may become RELAXED

© 2017 MariaDB Foundation

Acquire memory order

a= 1;
v1= b;

load(&ready, ACQUIRE);

c= 1;
v2= d;

Loads and stores after Acquire can not be reordered

before Acquire.

Loads and stores before Acquire can be reordered

after Acquire.

Acquire barrier

© 2017 MariaDB Foundation

Acquire memory order

Not same as read barrier!

a= 1;
v1= b;

smp_rmb();

c= 1;
v2= d;

Read barrier
a= 1;
v1= b;

load(&ready, ACQUIRE);

c= 1;
v2= d;

Acquire barrier

© 2017 MariaDB Foundation

while (load(&ready, ACQUIRE) != 1);

assert(result == 42);

Acquire memory order

result= 42;
ready= 1;

Meaningless alone!

Thread 1 Thread 2

© 2017 MariaDB Foundation

while (load(&ready, ACQUIRE) != 1);

assert(result == 42);

Acquire memory order

ready= 1;

result= 42;

Meaningless alone!

Thread 1 Thread 2

© 2017 MariaDB Foundation

Acquire memory order
Valid with atomic load or atomic read-modify-write
b= load(&a, ACQUIRE);
b= fas(&a, 1, ACQUIRE);
b= add(&a, 1, ACQUIRE);
b= cas(&a, &o, 1, ACQUIRE, ACQUIRE);

fence(ACQUIRE); // must be preceded by RELAXED atomic load or RMW

Not valid with atomic store
store(&a, 1, ACQUIRE); // undefined, may become RELAXED

© 2017 MariaDB Foundation

while (load(&ready, ACQUIRE) != 1);

assert(result == 42);

Release-Acquire model
Thread 1 Thread 2

result= 42;

store(&ready, 1, RELEASE);

Acquire must be always paired with Release (or

stronger). Only then all stores before Release in Thread

1 become visible after Acquire in Thread 2.

© 2017 MariaDB Foundation

Acquire_release memory order

a= 1;
v1= b;

fas(&ready, 1, ACQ_REL);

c= 1;
v2= d;

Loads and stores after Acquire_release can not be

reordered before Acquire_release.

Loads and stores before Acquire_release can not be

reordered after Acquire_release.

Acquire_release barrier

© 2017 MariaDB Foundation

Acquire_release memory order
Valid with atomic read-modify-write
b= fas(&a, 1, ACQ_REL);
b= add(&a, 1, ACQ_REL);
b= cas(&a, &o, 1, ACQ_REL, ACQ_REL);

fence(ACQ_REL); // must be preceded by RELAXED atomic load or RMW and
 // followed by RELAXED atomic store or RMW

Not valid with atomic load and store
b= load(&a, ACQ_REL); // undefined, may become ACQUIRE
store(&a, 1, ACQ_REL); // undefined, may become RELEASE

© 2017 MariaDB Foundation

b= 1;

while (stage != 1);
stage= 2;
assert(a == 1);

Acquire_release memory order
Thread 1 Thread 2

a= 1;
stage= 1;

while (stage != 2);
assert(b == 1);

© 2017 MariaDB Foundation

b= 1;

while (load(&stage, ACQUIRE) != 1);
store(&stage, 2, RELEASE);

assert(a == 1);

Acquire_release memory order
Thread 1 Thread 2

a= 1;

store(&stage, 1, RELEASE);

while (load(&stage, ACQUIRE) != 2);

assert(b == 1);

© 2017 MariaDB Foundation

b= 1;
o= 1;

while (!cas(&stage, &o, 2, ACQ_REL))
 o= 1;

assert(a == 1);

Acquire_release memory order
Thread 1 Thread 2

a= 1;

store(&stage, 1, RELEASE);

while (load(&stage, ACQUIRE) != 2);

assert(b == 1);

© 2017 MariaDB Foundation

Consume memory order

a= 1;
v1= b;

load(&str, CONSUME);

str[0]= ‘A’;
v2= str[1];
c= 1;
v2= d;

Consume is a weaker form of Acquire: loads and

stores, dependent on the value currently loaded, that

happen after Consume can not be reordered before

Consume.

Consume barrier

© 2017 MariaDB Foundation

Consume memory order
Valid with atomic load or atomic read-modify-write
b= load(&a, CONSUME);
b= fas(&a, 1, CONSUME);
b= add(&a, 1, CONSUME);
b= cas(&a, &o, 1, CONSUME, CONSUME);

fence(CONSUME); // must be preceded by RELAXED atomic load or RMW

Not valid with atomic store
store(&a, 1, CONSUME); // undefined, may become RELAXED

© 2017 MariaDB Foundation

char *s;

while (!(s= load(&str, CONSUME)));

assert(!strcmp(s, “Hello!”));
assert(result == 42);

Release-Consume model
Thread 1 Thread 2

char *s= strdup(“Hello!”);
result= 42;

store(&str, s, RELEASE);

Consume must be always paired with Release (or

stronger). Only then all dependent stores before

Release in Thread 1 become visible after Consume in

Thread 2.

© 2017 MariaDB Foundation

Release-Consume model

The specification of release-consume ordering is being

revised, and the use of memory_order_consume is

temporarily discouraged.

Note that as of February 2015 no known production

compilers track dependency chains: consume

operations are lifted to acquire operations.

© 2017 MariaDB Foundation

Sequentially consistent memory order

a= 1;
v1= b;

fas(&ready, 1, SEQ_CST);

c= 1;
v2= d;

Loads and stores after Sequentially_consistent can

not be reordered before Sequentially_consistent.

Loads and stores before Sequentially_consistent can

not be reordered after Sequentially_consistent.

Sequentially consistent

© 2017 MariaDB Foundation

Valid with any atomic operation...
b= fas(&a, 1, SEQ_CST);
b= add(&a, 1, SEQ_CST);
b= cas(&a, &o, 1, SEQ_CST, SEQ_CST);

fence(SEQ_CST);

...but there are traps
b= load(&a, SEQ_CST); // may become ACQUIRE + sync
store(&a, 1, SEQ_CST); // may become RELEASE + sync

Sequentially consistent memory order

© 2017 MariaDB Foundation

Cache coherent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

0
0

0
0

0

0

0

0

© 2017 MariaDB Foundation

Cache coherent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

b= 1

0
0

0
0

1

1

0

0

© 2017 MariaDB Foundation

Cache coherent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

b= 1

1
0

0
0

1

1

0

0

© 2017 MariaDB Foundation

Cache coherent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

b= 1

1
0

0
1

1

1

0

0

© 2017 MariaDB Foundation

Cache coherent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

b= 1

1
0

0
1

1

1

load a
load b

load a
load b

0

0

Core 1
was first

No! Core 2
was first

© 2017 MariaDB Foundation

Sequentially consistent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

b= 1

0
0

0
0

0

0

0

0

© 2017 MariaDB Foundation

Sequentially consistent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

1
0

1
0

1

0

0

1b= 1

© 2017 MariaDB Foundation

Sequentially consistent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

1
1

1
1

1

1

1

1b= 1

© 2017 MariaDB Foundation

Sequentially consistent system

Core 2

Core 1

Core 3

Core 4

Cache

Cache

Cache

Cache

a= 1

1
0

1
0

1

0

0

1b= 1

load a
load b

load a
load b

Core 1
was first

Yes, it was

© 2017 MariaDB Foundation

Atomic thread fence

● It is possible to issue memory barrier without an

associated atomic operation

● it is very advanced technology

● frequently misunderstood

● generally slower than memory barriers associated

with an atomic operation

© 2017 MariaDB Foundation

Atomic thread fence

● non-atomic and Relaxed operations cannot be

re-ordered after Release (first store)

● non-atomic and Relaxed operations cannot be

re-ordered before Acquire (last load)

● still requires atomic operations to work as defined

● not implemented in MariaDB API.

© 2017 MariaDB Foundation

Atomic thread fence

a= 1;
fence(RELEASE);
b= 1;

la= a;
fence(ACQUIRE);
lb= b;

if (lb == 1)
 assert(la == 1); // expectation:
 // may not fire

Thread 1 Thread 2

#define fence __atomic_thread_fence

#define RELEASE __ATOMIC_RELEASE
#define ACQUIRE __ATOMIC_ACQUIRE

uint32_t a= 0, b= 0;

Initial state

© 2017 MariaDB Foundation

Atomic thread fence

a= 1;
b= 1;

la= a;
fence(ACQUIRE);
lb= b;

if (lb == 1)
 assert(la == 1); // expectation:
 // may not fire

Thread 1 Thread 2

#define fence __atomic_thread_fence

#define RELEASE __ATOMIC_RELEASE
#define ACQUIRE __ATOMIC_ACQUIRE

uint32_t a= 0, b= 0;

Initial state

© 2017 MariaDB Foundation

Atomic thread fence

a= 1;
fence(RELEASE);
b= 1;

la= a;
lb= b;

if (lb == 1)
 assert(la == 1); // expectation:
 // may not fire

Thread 1 Thread 2

#define fence __atomic_thread_fence

#define RELEASE __ATOMIC_RELEASE
#define ACQUIRE __ATOMIC_ACQUIRE

uint32_t a= 0, b= 0;

Initial state

© 2017 MariaDB Foundation

Atomic thread fence

a= 1;
fence(RELEASE);
b= 1;

la= a;
fence(ACQUIRE);
lb= b;

if (lb == 1)
 assert(la == 1); // expectation:
 // may not fire

Thread 1 Thread 2

#define fence __atomic_thread_fence

#define RELEASE __ATOMIC_RELEASE
#define ACQUIRE __ATOMIC_ACQUIRE

uint32_t a= 0, b= 0;

Initial state

MAY
FIRE

© 2017 MariaDB Foundation

Atomic thread fence

Possible synchronizations:

● Fence-Atomic

● Atomic-Fence

● Fence-Fence

© 2017 MariaDB Foundation

Fence-Atomic synchronization

A release fence F in thread A synchronizes-with atomic

acquire operation Y in thread B, if...

fence(RELEASE); // F load(&a, ACQUIRE); // Y

Thread A Thread B

© 2017 MariaDB Foundation

● there exists an atomic store X (any memory order)

● Y reads the value written by X

● F is sequenced-before X in thread A

fence(RELEASE); // F
store(&a, 1, RELAXED); // X

load(&a, ACQUIRE); // Y

Thread A Thread B

Fence-Atomic synchronization

© 2017 MariaDB Foundation

In this case, all non-atomic and relaxed atomic stores

that happen-before X in thread A will be

synchronized-with all non-atomic and relaxed atomic

loads from the same locations made in thread B after F.

b= 1;
fence(RELEASE); // F
store(&a, 1, RELAXED); // X

if (load(&a, ACQUIRE) == 1) // Y
 assert(b == 1); // never fires

Thread A Thread B

Fence-Atomic synchronization

© 2017 MariaDB Foundation

Atomic-Fence synchronization

An atomic release operation X in thread A

synchronizes-with an acquire fence F in thread B, if ...

store(&a, 1, RELEASE); // X fence(ACQUIRE); // F

Thread A Thread B

© 2017 MariaDB Foundation

Atomic-Fence synchronization

● there exists an atomic read Y (any memory order)

● Y reads the value written by X

● Y is sequenced-before F in thread B

store(&a, 1, RELEASE); // X load(&a, RELAXED); // Y
fence(ACQUIRE); // F

Thread A Thread B

© 2017 MariaDB Foundation

if (load(&a, RELAXED) == 1) { // Y
 fence(ACQUIRE); // F
 assert(b == 1); // never fires
}

b= 1;
store(&a, 1, RELEASE); // X

In this case, all non-atomic and relaxed atomic stores

that happen-before X in thread A will be

synchronized-with all non-atomic and relaxed atomic

loads from the same locations made in thread B after F.

Thread A Thread B

Atomic-Fence synchronization

© 2017 MariaDB Foundation

Fence-Fence synchronization

A release fence FA in thread A synchronizes-with an

acquire fence FB in thread B, if ...

fence(RELEASE); // FA fence(ACQUIRE); // FB

Thread A Thread B

© 2017 MariaDB Foundation

Fence-Fence synchronization

● there exists an atomic store X (any memory order)

● FA is sequenced-before X in thread A

fence(RELEASE); // FA
store(&a, 1, RELAXED); // X

fence(ACQUIRE); // FB

Thread A Thread B

© 2017 MariaDB Foundation

Fence-Fence synchronization

● there exists an atomic read Y (any memory order)

● Y reads the value written by X

● Y is sequenced-before FB in thread B

fence(RELEASE); // FA
store(&a, 1, RELAXED); // X

load(&a, RELAXED); // Y
fence(ACQUIRE); // FB

Thread A Thread B

© 2017 MariaDB Foundation

Fence-Fence synchronization

In this case, all non-atomic and relaxed atomic stores

that happen-before FA in thread A will be

synchronized-with all non-atomic and relaxed atomic

loads from the same locations made in thread B after

FB.

b= 1;
fence(RELEASE); // FA
store(&a, 1, RELAXED); // X

if (load(&a, RELAXED) == 1) { // Y
 fence(ACQUIRE); // FB
 assert(b == 1); // never fires }

Thread A Thread B

© 2017 MariaDB Foundation

Fence-Fence synchronization

char *data[10];

void producer()
{
 for (int i= 0; i < 10; i++)
 data[i]= strdup("some long string");
}

void consumer()
{
 for (int i= 0; i < 10; i++)
 puts(data[i]);
}

Example

© 2017 MariaDB Foundation

Fence-Fence synchronization

char *data[10];
uint32_t ready[10]= { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

void producer()
{
 for (int i= 0; i < 10; i++)
 {
 data[i]= strdup("some long string");
 my_atomic_store32_explicit(&ready[i], 1, MY_MEMORY_ORDER_RELEASE);
 }
}

void consumer()
{
 for (int i= 0; i < 10; i++)
 {
 if (my_atomic_load32_explicit(&ready[i], MY_MEMORY_ORDER_ACQUIRE) == 1)
 puts(data[i]);
 }
}

Example

© 2017 MariaDB Foundation

Fence-Fence synchronization

char *data[10];
uint32_t ready[10]= { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

void producer()
{
 for (int i= 0; i < 10; i++)
 data[i]= strdup("some long string");
 fence(MY_MEMORY_ORDER_RELEASE);
 for (int i= 0; i < 10; i++)
 my_atomic_store32_explicit(&ready[i], 1, MY_MEMORY_ORDER_RELAXED);
}

void consumer()
{
 for (int i= 0; i < 10; i++)
 {
 if (my_atomic_load32_explicit(&ready[i], MY_MEMORY_ORDER_ACQUIRE) == 1)
 puts(data[i]);
 }
}

Example

© 2017 MariaDB Foundation

Fence-Fence synchronization

char *data[10];
uint32_t ready[10]= { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

void producer()
{
 for (int i= 0; i < 10; i++)
 {
 data[i]= strdup("some long string");
 my_atomic_store32_explicit(&ready[i], 1, MY_MEMORY_ORDER_RELEASE);
 }
}

void consumer()
{
 uint32_t tmp[10];
 for (int i= 0; i < 10; i++)
 tmp[i]= my_atomic_load32_explicit(&ready[i], MY_MEMORY_ORDER_RELAXED);
 fence(MY_MEMORY_ORDER_ACQUIRE);
 for (int i= 0; i < 10; i++)
 if (tmp[i] == 1)
 puts(data[i]);
}

Example

© 2017 MariaDB Foundation

Fence-Fence synchronization

char *data[10];
uint32_t ready[10]= { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

void producer()
{
 for (int i= 0; i < 10; i++)
 data[i]= strdup("some long string");
 fence(MY_MEMORY_ORDER_RELEASE);
 for (int i= 0; i < 10; i++)
 my_atomic_store32_explicit(&ready[i], 1, MY_MEMORY_ORDER_RELAXED);
}

void consumer()
{
 uint32_t tmp[10];
 for (int i= 0; i < 10; i++)
 tmp[i]= my_atomic_load32_explicit(&ready[i], MY_MEMORY_ORDER_RELAXED);
 fence(MY_MEMORY_ORDER_ACQUIRE);
 for (int i= 0; i < 10; i++)
 if (tmp[i] == 1)
 puts(data[i]);
}

Example

© 2017 MariaDB Foundation

References

http://en.cppreference.com/w/cpp/atomic/memory_order

https://en.wikipedia.org/wiki/Memory_ordering

http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/

http://en.cppreference.com/w/cpp/atomic/memory_order
https://en.wikipedia.org/wiki/Memory_ordering
http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/

