
© 2017 MariaDB Foundation
* *

Optimizer in 10.2 and 10.3

Vicențiu Ciorbaru
Software Engineer @ MariaDB Foundation

© 2017 MariaDB Foundation

What's new in MariaDB Optimizer

■ Most features in 10.3 are additions over 10.2
features.

■ Improved support / optimizations for CTEs and
Window Functions

© 2017 MariaDB Foundation

What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

© 2017 MariaDB Foundation

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

Keyword

Syntax

© 2017 MariaDB Foundation

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

CTE Name

Syntax

© 2017 MariaDB Foundation

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

CTE Body

Syntax

© 2017 MariaDB Foundation

What are CTEs?

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ... CTE Usage

Syntax

© 2017 MariaDB Foundation

What are CTEs?

CTEs are similar to derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

)
SELECT *
FROM engineers
WHERE ...

SELECT *
FROM (SELECT *

FROM employees
WHERE dept=”Engineering”) AS engineers

WHERE ...

© 2017 MariaDB Foundation

What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

),
eu_engineers AS (

SELECT *
FROM engineers
WHERE country IN (”CN”,...)

)
SELECT *
FROM eu_engineers
WHERE ...

SELECT *
FROM (SELECT *
 FROM (SELECT *
 FROM employees
 WHERE dept=”Engineering”) AS engineers
 WHERE country IN (”CN”,...))
WHERE ...

© 2017 MariaDB Foundation

What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept=”Engineering”

),
eu_engineers AS (

SELECT *
FROM engineers
WHERE country IN (”CN”,...)

)
SELECT *
FROM eu_engineers
WHERE ...

SELECT *
FROM (SELECT *
 FROM (SELECT *
 FROM employees
 WHERE dept=”Engineering”) AS engineers
 WHERE country IN (”CN”,...))
WHERE ...

Linear View Nested View

© 2017 MariaDB Foundation

What are CTEs?

Example: Year-over-year comparisons

WITH sales_product_year AS (
 SELECT
 product,
 year(ship_date) as year,
 SUM(price) as total_amt
 FROM
 item_sales
 GROUP BY
 product, year
)

SELECT *
FROM
 sales_product_year CUR,
 sales_product_year PREV,
WHERE
 CUR.product = PREV.product AND
 CUR.year = PREV.year + 1 AND
 CUR.total_amt > PREV.total_amt

© 2017 MariaDB Foundation

Recursive CTEs

■ MariaDB also supports recursive references to CTEs

■ Makes SQL language Turing Complete

■ Ability to express hierarchical queries

○ Ex. List all employees below CTO

○ We are working on supporting CONNECT BY
syntax from Oracle

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex' <--- Base (Anchor) part
 union [all] <--- Keyword
 select f.* <--- Recursive part
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+

Step 1: Get table header and types from Anchor

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+

Step 2: Get values for anchor

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
| 100 | Alex | 20 | 30 |
+------+--------------+--------+--------+

Step 2: Get values for anchor

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
| 100 | Alex | 20 | 30 |
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
| 100 | Alex | 20 | 30 |
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
| 100 | Alex | 20 | 30 |
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

© 2017 MariaDB Foundation

Recursive CTEs

with recursive ancestors as (
 select * from folks
 where name = 'Alex'
 union
 select f.*
 from folks as f, ancestors AS a
 where
 f.id = a.father or f.id = a.mother
)
select * from ancestors;

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+------+--------------+--------+--------+

+------+--------------+--------+--------+
| id | name | father | mother |
+------+--------------+--------+--------+
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
+------+--------------+--------+--------+

Step 3: Compute recursive iteration

No new rows!
Done!

© 2017 MariaDB Foundation

Summary so far

■ CTEs are essentially “query local views”

■ Allow for greater optimization potential than views

■ Can express hierarchical queries using recursion

© 2017 MariaDB Foundation

What can window functions do?

Long Table

■ Can access multiple rows from the
current row.

© 2017 MariaDB Foundation

What can window functions do?

Long Table

■ Can access multiple rows from the
current row.

■ Eliminate self-joins.

© 2017 MariaDB Foundation

What can window functions do?

Long Table

■ Can access multiple rows from the
current row.

■ Eliminate self-joins.

■ Get faster running queries.

© 2017 MariaDB Foundation

What are window functions?

■ Similar to aggregate functions

○ Computed over a sequence of rows

■ But they provide one result per row

○ Like regular functions!

■ Identified by the OVER clause.

© 2017 MariaDB Foundation

What are window functions?

SELECT

email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Similar to regular functions

+------------------------+------------+-----------+--------------+
| email | first_name | last_name | account_type |
+------------------------+------------+-----------+--------------+
admin@boss.org	Admin	Boss	admin
bob.carlsen@foo.bar	Bob	Carlsen	regular
eddie.stevens@data.org	Eddie	Stevens	regular
john.smith@xyz.org	John	Smith	regular
root@boss.org	Root	Chief	admin
+------------------------+------------+-----------+--------------+

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

This order is not deterministic!

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
2	admin@boss.org	Admin	Boss	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
5	john.smith@xyz.org	John	Smith	regular
4	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

This is also valid!

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
5	admin@boss.org	Admin	Boss	admin
4	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
2	john.smith@xyz.org	John	Smith	regular
1	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

And this one...

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

Now only this one is valid!

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
+------+------------------------+------------+-----------+--------------+

How do we “group” by account type?

© 2017 MariaDB Foundation

What are window functions?

SELECT
row_number() over (PARTITION BY account_type ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users
ORDER BY account_type, email;

Let’s start with a “function like” example

+------+------------------------+------------+-----------+--------------+
| rnum | email | first_name | last_name | account_type |
+------+------------------------+------------+-----------+--------------+
1	admin@boss.org	Admin	Boss	admin
2	root@boss.org	Root	Chief	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
2	eddie.stevens@data.org	Eddie	Stevens	regular
3	john.smith@xyz.org	John	Smith	regular
+------+------------------------+------------+-----------+--------------+

row_number() resets for every
partition

© 2017 MariaDB Foundation

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

© 2017 MariaDB Foundation

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING),

FROM data_points
ORDER BY time;

© 2017 MariaDB Foundation

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 3 PRECEDING
 AND 3 FOLLOWING),

FROM data_points
ORDER BY time;

© 2017 MariaDB Foundation

What are window functions?

SELECT
time, value

FROM data_points
ORDER BY time;

How about that aggregate similarity?

SELECT
time, value
avg(value) over (ORDER BY time
 ROWS BETWEEN 6 PRECEDING
 AND 6 FOLLOWING),

FROM data_points
ORDER BY time;

© 2017 MariaDB Foundation

Window Functions in MariaDB
■ We support in 10.2:

○ ROW_NUMBER, RANK, DENSE_RANK,

PERCENT_RANK, CUME_DIST, NTILE

○ FIRST_VALUE, LAST_VALUE, NTH_VALUE,

LEAD, LAG

○ All regular aggregate functions except

GROUP_CONCAT

© 2017 MariaDB Foundation

Window Functions in MariaDB
■ In 10.3 we (will) support:

○ Advanced window functions such as:

PERCENTILE_CONT, PERCENTILE_DISC,

MEDIAN

○ Feature parity with ColumnStore engine.

○ Performance optimizations for MIN/MAX when

result sets are already ordered. (To be pushed

before 10.3 is Beta)

