MariaDB

FOUNDATION

Optimizer in 10.2 and 10.3

Vicentiu Ciorbaru
Software Engineer @ MariaDB Foundation

© 2017 MariaDB Foundation MO riO D B

J What's new in MariaDB Optimizer

m Most features in 10.3 are additions over 10.2
features.

m Improved support / optimizations for CTEs and
Window Functions

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering

)

)
SELECT *

FROM engineers
WHERE ...

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT * <::ﬁ Keyword

FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT * ﬁ CTE Name

FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MO riO D B

J What are CTES?

Syntax

WITH engineers AS (

SELECT *
FROM employees
WHERE dept:”Engineer\ing» ﬁ CTE BOdy

)
SELECT *

FROM engineers
WHERE ..

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

Syntax

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering”

)
SELECT *

FROM engineers
WHERE ... CTE Usage

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

CTEs are similar to derived tables.

WITH engineers AS (SELECT *
SELECT * FROM (SELECT *
FROM employees FROM employees
WHERE dept="Engineering” WHERE dept="”Engineering”) AS engineers
) WHERE ...
SELECT *
FROM engineers
WHERE ..

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (SELECT *

SELECT * FROM (SELECT *

FROM employees FROM (SELECT *

WHERE dept="Engineering” FROM employees
) WHERE dept="Engineering”) AS engineers
eu_engineers AS (WHERE country IN (”CN”,...))

SELECT * WHERE ...

FROM engineers
WHERE country IN (”CN”,...)
)
SELECT *
FROM eu_engineers
WHERE ..

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

CTEs are more readable than derived tables.

WITH engineers AS (
SELECT *
FROM employees
WHERE dept="Engineering”
)
eu_engineers AS (
SELECT *
FROM engineers
WHERE country IN (”CN”,...)
)
SELECT *
FROM eu_engineers
WHERE ..

Linear View

SELECT *
FROM (SELECT *

FROM (SELECT *

FROM employees

WHERE dept="Engineering”) AS engineers
WHERE country IN (”CN”,...))

WHERE ...

Nested View

© 2017 MariaDB Foundation MO riO D B

J What are CTEs?

Example: Year-over-year comparisons

WITH sales_product_year AS (SELECT *

SELECT FROM
product, sales _product_year CUR,
year(ship_date) as year, sales_product_year PREV,
SUM(price) as total amt WHERE

FROM CUR.product = PREV.product AND
item_sales CUR.year = PREV.year + 1 AND

GROUP BY CUR.total _amt > PREV.total amt

product, year

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

m MariaDB also supports recursive references to CTEs
m Makes SQL language Turing Complete
m Ability to express hierarchical queries

o Ex. List all employees below CTO

o We are working on supporting CONNECT BY
syntax from Oracle

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

with recursive ancestors as (
select * from folks

where name = 'Alex'’ <--- Base (Anchor) part
union [all] <--- Keyword

select f.* <--- Recursive part
from folks as f, ancestors AS a

where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

© 2017 MariaDB Foundation MO riO D BO

J Recursive CTEs

Step 1: Get table header and types from Anchor

with recursive ancestors as (

select * from folks > +------ et +-------- +-------- +
where name = 'Alex' | id | name | father | mother |
union Fom———- e T T Fomm - Fomm - +
select f.*

from folks as f, ancestors AS a

where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 2: Get values for anchor

with recursive ancestors as (

select * from folks +------ et +-------- +-------- +
where name = 'Alex' | id | name | father | mother |
union Fom———- e T T Fomm - Fomm - +
select f.*

from folks as f, ancestors AS a

where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-————- domm - +-—— - +-—— - +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 2: Get values for anchor

with recursive ancestors as (

select * from folks +------ L LT do--mmm-- e +
where name = 'Alex' | id | name | father | mother |
union +------ Fommmmm e Fo------- Fo------- +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a tm----- LeEEEEEEE LR LEEE LR R R L EE LR +
where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-————- domm - +-—— - +-—— - +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks t------ R el AR AR +
where name = 'Alex' | id | name | father | mother |
union t------ Fommm oo to--mm - - to-mmm - - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a +------ Fommmmmmmmmm oo t-------- +-------- +
where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks t------ R el AR AR +
where name = 'Alex' | id | name | father | mother |
union +------ Fommm i m - to---- - - t----- - - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a +------ Fommmmmmmmmm oo t-------- +-------- +
where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks t------ R el AR AR +
where name = 'Alex' | id | name | father | mother |
union +------ Fommm i m - to---- - - t----- - - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a +------ Fommmmmmmmmm oo t-------- +-------- +
where

f.id = a.father or f.id = a.mother

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ et +-------- +-------- +
where name = 'Alex' | id | name | father | mother |
union +------ e +-------- e +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |

f.id = a.father or f.id = a.mother +------ e T +-------- +-------- +

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ et +-------- +-------- +
where name = 'Alex' | id | name | father | mother |
union +------ e +-------- e +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |

f.id = a.father or f.id = a.mother +------ e T +-------- +-------- +

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ et +-------- +-------- +
where name = 'Alex' | id | name | father | mother |
union +------ e +-------- e +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |

f.id = a.father or f.id = a.mother +------ e T +-------- +-------- +

)

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ e T e N +
where name = 'Alex' | id | name | father | mother |
union +------ e T +--mmmm-- +--mmm-- - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |
f.id = a.father or f.id = a.mother | 10 | Grandpa Bill | NULL | NULL |

) +------ Fommmm e +-------- +-------- +

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B®

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ e T e N +
where name = 'Alex' | id | name | father | mother |
union +------ e T +--mmmm-- +--mmm-- - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |
f.id = a.father or f.id = a.mother | 10 | Grandpa Bill | NULL | NULL |

) +------ Fommmm e +-------- +-------- +

select * from ancestors;

+-———-- e it - - +
| id | name | father | mother |
+-———-- Fommmmmm - +-——————- +-——————- +
100	Alex	20	30
20	Dad	10	NULL
30	Mom	NULL	NULL
10	Grandpa Bill	NULL	NULL
98	Sister Amy	20	30
+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Recursive CTEs

Step 3: Compute recursive iteration

with recursive ancestors as (

select * from folks +------ e T e N +
where name = 'Alex' | id | name | father | mother |
union +------ e T +--mmmm-- +--mmm-- - +
select f.* | 100 | Alex | 20 | 30 |
from folks as f, ancestors AS a | 20 | Dad | 10 | NULL |
where | 30 | Mom | NULL | NULL |
f.id = a.father or f.id = a.mother | 10 | Grandpa Bill | NULL | NULL |

) +------ Fommmm e +-------- +-------- +

select * from ancestors;

+-———-- e it - +-—— === +
| id | name | father | moth No new rows!
+-———-- Fommmmmm - +-——————- +-———-

| 100 | Alex | 20 | Done!

| 20 | Dad | 10 | NULL]

| 30 | Mom | NULL | NULL |

| 10 | Grandpa Bill | NULL | NULL |

| 98 | Sister Amy | 20 | 30 |

+-———-- e it - - +

© 2017 MariaDB Foundation MO riO D B

J Summary so far

m CTEs are essentially “query local views”
m Allow for greater optimization potential than views

m Can express hierarchical queries using recursion

© 2017 MariaDB Foundation MO riO D B®

J What can window functions do?

m Can access multiple rows from the
current row.

Long Table

=

© 2017 MariaDB Foundation MO”O D BO

J What can window functions do?

m Can access multiple rows from the
current row.

@ Long Table
m Eliminate self-joins. :D

© 2017 MariaDB Foundation MO”O D BO

J What can window functions do?

m Can access multiple rows from the
current row.

@ Long Table
m Eliminate self-joins. :D

m Get faster running queries.

© 2017 MariaDB Foundation MO”O D BO

J What are window functions?

m Similar to aggregate functions

o Computed over a sequence of rows
m But they provide one result per row

o Like regular functions!

m ldentified by the OVER clause.

© 2017 MariaDB Foundation MO riO D B®

J What are window functions?

Similar to regular functions

SELECT

email, first_name,
last_name, account_type
FROM users
ORDER BY email;

e dommm e R T +
| email | first _name | last_name | account_type |
T Hmmmmm - Hmmmmmm - Hmmmmm e +
admin@boss.org	Admin	Boss	admin
bob.carlsen@foo.bar	Bob	Carlsen	regular
eddie.stevens@data.org	Eddie	Stevens	regular
john.smith@xyz.org	John	Smith	regular
root@boss.org	Root	Chief	admin
e dommm e R T +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

This order is not deterministic!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

This is also valid!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
2	admin@boss.org	Admin	Boss	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
5	john.smith@xyz.org	John	Smith	regular
4	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over () as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

And this one...
+--2-- R e T dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
5	admin@boss.org	Admin	Boss	admin
4	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
2	john.smith@xyz.org	John	Smith	regular
1	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

Now only this one is valid!

dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY email;

How do we “group” by account type?

o= e R R L +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- T fmmmmm - fmmmmmm - Hmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	bob.carlsen@foo.bar	Bob	Carlsen	regular
3	eddie.stevens@data.org	Eddie	Stevens	regular
4	john.smith@xyz.org	John	Smith	regular
5	root@boss.org	Root	Chief	admin
o= e R R T +

© 2017 MariaDB Foundation MO riO D B®

J What are window functions?

Let’s start with a “function like” example

SELECT
row_number() over (PARTITION BY account_type ORDER BY email) as rnum,
email, first_name,
last_name, account_type

FROM users

ORDER BY account_type, email;

row_number() resets for every

partition
+--2-- R e T dommm e e R Fommm e +
| rnum | email | first _name | last_name | account_type |
Hmmmm-- e Hmmmmm e Hmmmmm - fmmmmmm e +
1	admin@boss.org	Admin	Boss	admin
2	root@boss.org	Root	Chief	admin
1	bob.carlsen@foo.bar	Bob	Carlsen	regular
2	eddie.stevens@data.org	Eddie	Stevens	regular
3	john.smith@xyz.org	John	Smith	regular
t------ R e T dommm e e R Fommm e +

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 10] — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

~0.5-]

~1.0-

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
—O.5i
1.0
Time
SELECT Sensor Data
time , Va lue 10] — Raw Data — Smoothed Average
avg(value) over (ORDER BY time]
05
)>
FROM data_points 3 .
g

ORDER BY time;

-0.5

1.0

Time

© 2017 MariaDB Foundation MO riO D B

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
-0.5
1.0
Time
SELECT Sensor Data
t j_me , Vva lue 10] — Raw Data — Smoothed Average
avg(value) over (ORDER BY time]
ROWS BETWEEN 3 PRECEDING 05.]
AND 3 FOLLOWING),
FROM data_points E .
g

ORDER BY time;

-0.5

1.0

Time

© 2017 MariaDB Foundation MO riO D BO

J What are window functions?

How about that aggregate similarity?

Sensor Data
SELECT 1.0; — Raw Data
time, value]
FROM data_points
ORDER BY time;

0.5-]

>
—O.Si
1.0
Time
SELECT Sensor Data
time , Va lue 10] — Raw Data 2x Smoothed Average
avg(value) over (ORDER BY time \f\/\
ROWS BETWEEN 6 PRECEDING 05; M
AND 6 FOLLOWING),] A

FROM data_points
ORDER BY time;

P
<’>
Ny
=
/‘

N

Time

© 2017 MariaDB Foundation MO riO D B

/] Window Functions in MariaDB

m We support in 10.2:
o ROW_NUMBER, RANK, DENSE_RANK,
PERCENT_RANK, CUME_DIST, NTILE
o FIRST_VALUE, LAST _VALUE, NTH_ VALUE,
LEAD, LAG
o All regular aggregate functions except
GROUP_CONCAT

© 2017 MariaDB Foundation MO riO D B®

/] Window Functions in MariaDB

m In 10.3 we (will) support:
o Advanced window functions such as:

PERCENTILE_CONT, PERCENTILE_DISC,
MEDIAN

o Feature parity with ColumnStore engine.
o Performance optimizations for MIN/MAX when

result sets are already ordered. (To be pushed

before 10.3 is Beta)

© 2017 MariaDB Foundation MO riO D B®

