
Brainstorming:
Cross-Engine Transactions

Global transaction metadata storage

Marko Mäkelä, Lead Developer InnoDB

InnoDB
Concepts

A mini-transaction is an atomic
set of page reads or writes,
with write-ahead redo log.

A transaction writes undo log
before modifying indexes.

The read view of a transaction
may access the undo logs of
newer transactions to retrieve
old versions.

Purge may remove old undo logs
and delete-marked records
once no read view needs them.

Some terms that an Advanced
DBA should be familiar with

Mini-Transaction

Mini-Transactions: RW-Locks and Redo Logs

Memo:
Locks or
Buffer-Fixes

Index tree latch
(dict_index_t::lock):
covers internal pages

Tablespace latch
(fil_space_t::lock):
allocation bitmap pages

Log:
Page
Changes

Data FilesFlush (after log
written) Redo Log Files

(ib_logfile*
)

Redo Log Buffer
(log_sys_t::buf)

Write ahead (of page flush) to log (make durable)

Buffer pool page
(buf_block_t)

Mini-transactions and Durability
Depending on when the redo log buffer was written to the redo log files, recovery
may miss some latest mini-transaction commits. The most important
mini-transaction commit is that of a
User transaction commit:
1. Update undo log directory and header pages.
2. Commit the mini-transaction (write to the redo log buffer).
3. Obtain the last written LSN (redo log sequence number) in the buffer.
4. Optionally, ensure that all redo log buffer is written at least up to the LSN.
One parameter related to the transaction durability is
innodb_flush_log_at_trx_commit.

● Start transaction:
○ Assign trx->id = trx_sys.max_trx_id++ (also known as DB_TRX_ID)
○ Create undo log header, update undo log directory (also known as “rollback segment page”).
○ Done on the first write of a transaction.
○ Never done for read-only transactions.

● Write undo log record:
○ Append to last undo page, or allocate a new undo page and write the record there.
○ InnoDB writes undo log in advance, before updating each index affected by the row operation.

● Commit transaction:
○ Assign end id (trx->no) from the same increasing sequence as trx->id.
○ Update undo log header and undo log directory (trx->no is unnecessarily written).
○ Change main-memory data structures: release locks, resume waiting transactions (and

purge).

Mini-transaction Operations for Transactions

InnoDB Transaction Layer
The InnoDB transaction layer relies on atomically updated data pages forming

persistent data structures:
● Page allocation bitmap, index trees, undo log directories, undo logs
● Undo logs are the glue that make the indexes of a table look consistent.
● On startup, any pending transactions (with implicit locks) will be recovered

from undo logs.
○ Locks will be kept until incomplete transactions are rolled back, or
○ until explicit XA COMMIT or XA ROLLBACK . (These can be issued by binlog recovery too.)

● On startup, InnoDB must know which transactions are committed.
○ This is currently stored in the undo log header or undo log directory.
○ Proposal: CREATE TABLE sys.transactions for persistently storing transaction

metadata.

LAYOUT

Title and Text
(2 Column)

Persistent Table for Transaction Metadata

● No ROLLBACK, undo logging, purge or MVCC for this table!
● Only 1 key: start_time BIGINT UNSIGNED AUTO_INCREMENT PRIMARY KEY

○ Corresponds to the InnoDB DB_TRX_ID and PAGE_MAX_TRX_ID (48 bits)
○ end_time (COMMIT/XA PREPARE) uses the same underlying sequence
○ The start_time , end_time can also be used for temporal tables (“as of”)

● GTID, XID and other metadata would be part of the record
○ Uniqueness of GTID, XID is enforced by caching all transactions in RAM.

● Can be stored in any crash-safe engine (InnoDB, Aria, MyRocks)
○ Unless and until we have a common crash recovery log for all engines, this

must be partitioned by storage engine
● Can be partitioned further for improved commit concurrency

○ Analogy: 128 InnoDB rollback segment header pages (undo log directories)

LAYOUT

Title and Text
(2 Column)

Cross-Engine R/W Transactions, XID, GTID

CREATE TABLE sys.transactions_of_$engine(

 start_id SERIAL COMMENT 'logical start time, like DB_TRX_ID',

 xid CHAR(128) NULL /*UNIQUE*/ COMMENT 'XA transaction ID',

 gtid CHAR(16) NOT NULL /*UNIQUE*/,

 state ENUM('active','prepared','pre_commit','committed') NOT NULL

) NO_ROLLBACK; -- any crash-safe $engine: Aria, InnoDB, MyRocks, …

LAYOUT

Title and Text
(2 Column)

● Storage engines maintain private state needed for MVCC, locking, and COMMIT,
ROLLBACK, XA ROLLBACK, XA COMMIT.
○ The sys.transactions record only tracks the transaction state.

● Referential integrity considerations (in particular, after crash recovery):
○ Engines must know all their pending sys.transactions.start_id
○ Must be able to ROLLBACK (or COMMIT) or XA COMMIT or XA ROLLBACK

● On completion, ROLLBACK can DELETE FROM sys.transactions.
● For GTID, we must preserve the latest sequence from each source domain

○ If no GTID, COMMIT can DELETE FROM sys.transactions.
● XA PREPARE transactions must remain until XA COMMIT or XA ROLLBACK

Removal of Transaction History

LAYOUT

Title and Text
(2 Column)

● Writes to the partitions of sys.transactions will be persisted to the recovery log of
the underlying storage engine(s).
○ A transaction state change (COMMIT, XA PREPARE , XA COMMIT , XA ROLLBACK) is

durable when the write to sys.transactions becomes durable.
● On startup, engines may SELECT * FROM sys.transactions WHERE …;

○ MyRocks would need this at least to determine XA transaction state.
○ InnoDB will do this for all start_id found in its undo logs.

● InnoDB could move undo logs into filename.ibu files
○ Easier to manage undo logs and to see how much space they take
○ Combined with some changes to .ibd files, we could

■ Remove or make optional the InnoDB system tablespace (MDEV-11633) and do
■ Support instant import of InnoDB tables by “simply copying files” (MDEV-11658)

Crash Recovery with the sys.transactions

https://jira.mariadb.org/browse/MDEV-11633
https://jira.mariadb.org/browse/MDEV-11658

LAYOUT

Title and Text
(2 Column)

● Commit must be Atomic and Durable across storage engines
○ If we had a cross-engine write-ahead log, this would be trivial.
○ Some kind of 2-phase commit is needed for engines that use a private log.

● Possible idea to allow cross-engine commit without enabling binlog:
○ For each participating engine:

■ UPDATE sys.transactions_of _$engine SET state='pre_commit';
■ Flush the recovery log.

○ For each participating engine:
■ UPDATE sys.transactions_of _$engine SET state='committed';

○ Flush at least one recovery log.

Cross-Engine Commit Without Binlog

LAYOUT

Title and Text
(2 Column)

Read and merge the transaction metadata records into RAM.

● If state='committed' in any record for the same start_id:
○ Other records must have state IN ('prepared','pre_commit') .
○ UPDATE…SET state='committed' in all records.
○ Recover the transaction as committed.

● If state='prepared' in all records: recover as XA PREPARE.
○ The transaction state will remain until XA ROLLBACK or XA COMMIT .

● Otherwise: treat the transaction as incomplete, and initiate ROLLBACK:
○ Upon completion, each storage engine can DELETE the records.

Cross-Engine Transaction Recovery
without Binlog

LAYOUT

Title and Text
(2 Column)

These slides were quickly composed and edited from 2 of my other presentations. This
version was edited after the presentation for clarity

Thanks to Monty for pointing out that we do not really need to write a transaction end ID
anywhere. (InnoDB only needs it for multi-versioning read views, including the purge read
view.)

Thanks to Andrei Elkin and Monty for clarifying what exactly we need to preserve for GTID.

Hopefully, this idea could replace the GTID table, pave the way for removing the InnoDB
system tablespace, and allow to have cross-engine transactions without enabling the binlog.

Thank You

