
LAYOUT

Title Slide (Dark)

What’s New in MariaDB
Server 10.3
Max Mether
VP Server

LAYOUT

Section Header (Dark)

Recap MariaDB 10.2

New in MariaDB 10.2 - GA since May 2017

LAYOUT

Title Only
PowerPoint DefaultWhat’s New in 10.2

Analytics SQL ● Window Functions
● Common Table Expressions (CTE)

JSON ● JSON Functions
● GeoJSON Functions

Replication ● Delayed Replication
● Restrict the speed of reading binlog from Master
● Compressed Binary Log

Database Compatibility ● Multi-Trigger Support
● CHECK Constraint Expression Support
● EXECUTE IMMEDIATE statement
● Support for DEFAULT with expressions
● DECIMAL increased from 30 to 38 digits

Storage Engine
Enhancements

● New Storage Engine MyRocks based on RocksDB from Facebook
● Enhancements from MySQL InnoDB 5.7
● Enable InnoDB NUMA interleave for InnoDB

LAYOUT

Title Only
PowerPoint DefaultWhat’s New in 10.2

Security ● Per User Server Load Limitations
● Enforced TLS Connections

Administration ● New functions for User Management
● Enhanced Informations from EXPLAIN
● User defined variables added to Information Schema
● Binary Log based Flashback

Performance ● Enhanced Performance for creating Connections
● Indexes for Virtual Columns
● New Option to define a directory for InnoDB temporary files

Server-Internal
Optimisations

● Internal Use of MariaDB Connector/C
● Optimizer Enhancements
● Non-Locking ANALYZE TABLE

Other Enhancements ● Lifted limitations for Virtual Computed Columns
● Subquery-Support for Views
● Multiple Use of Temporary Tables in Query

LAYOUT

Blank (Dark)

MariaDB Server 10.3 - Database Compatibility
and Temporal Data Support for MariaDB Server

LAYOUT

Title Only
PowerPoint Default

Overview MariaDB Server 10.3

Temporal Data processing
• System Versioned Tables store information

relating to past and present time.

Database Compatibility Enhancements
• PL/SQL compatibility parser
• Sequences
• INTERSECT and EXCEPT to complement UNION
• New ROW type and TYPE OF stored functions
• Invisible Columns

Performance
• ADD INSTANT COLUMN for InnoDB
• Statement based lock wait timeouts

Flexibility
• User defined aggregate functions
• Compressed Columns
• Proxy protocol support

Scalability
• Spider storage engine updated to the latest release

Removed limitations
• DELETE statement can delete from the table that

is used in a subquery in the WHERE clause
• UPDATE statements can use same source and

target

LAYOUT

Section Header (Dark)

Database Compatibility Enhancements

Generation of unique primary keys by
SEQUENCES

LAYOUT

Content with Caption
PowerPoint Default

Generation of
unique primary

keys by
SEQUENCES

• To enhance the database compatibility with other
vendors, MariaDB Server now allows the creation of a
SEQUENCE, which is used to create a sequence of
numeric values

• Creating a sequence is not replacing the auto increment
option, which is well known by MariaDB users, but is an
alternative of creating unique identifiers and offers more
control of how numbers are created

• Sequences also allow to compute the last number created
by all existing sequences, a limitation auto increments
have as they only can compute their own last number
created.

• Sequences are implemented as tables with some
exclusive options in MariaDB, which allows that existing
tools and processes work unchanged

LAYOUT

Title Only
PowerPoint Default

CREATE SEQUENCE s START WITH 100 INCREMENT BY 10;

select NEXTVAL(s);
+------------+
| NEXTVAL(s) |
+------------+
| 100 |
+------------+

select NEXTVAL(s);
+------------+
| NEXTVAL(s) |
+------------+
| 110 |
+------------+

Generation of unique primary keys by SEQUENCES
Example

• A sequence can be created by the syntax
CREATE [OR REPLACE] [TEMPORARY] SEQUENCE [IF NOT
EXISTS] sequence_name
[INCREMENT [BY | =] increment]
[MINVALUE [=] minvalue | NO MINVALUE | NOMINVALUE]
[MAXVALUE [=] maxvalue | NO MAXVALUE | NOMAXVALUE]
[START [WITH | =] start]
[CACHE [=] cache] [[NO] CYCLE] [table_options]

• Values of a sequence are returned by
– NEXT VALUE FOR sequence_name
– NEXTVAL(sequence_name)
– PREVIOUS VALUE FOR sequence_name
– LASTVAL(sequence_name)

– With sql_mode=Oracle are supported

• sequence_name.nextval
• sequence_name.currval

LAYOUT

Section Header (Dark)

Database Compatibility Enhancements

Operations over result sets with INTERSECT
and EXCEPT

LAYOUT

Content with Caption
PowerPoint Default

• MariaDB Server is adding INTERSECT and EXCEPT to
UNION, which already exists in former versions

• The result of an INTERSECT is the intersection of right
and left SELECT results, i.e. only records that are present
in both result sets will be included in the result of the
operation.

• The result of EXCEPT is all records of the left SELECT
result except records which are in right SELECT result
set, i.e. it is subtraction of two result sets.

Operations over
result sets with
INTERSECT and

EXCEPT

EXCEPT

IN
T

E
R

S
E

C
T

A EXCEPT B

LAYOUT

Title Only
PowerPoint Default

SELECT id, name FROM nam;
+----+-------+
| id | name |
+----+-------+
1	jon
2	max
3	kevin
5	bill
8	matt
9	bob
11	craig
+----+-------+

SELECT id, name FROM emea;
+----+----------+
| id | name |
+----+----------+
1	jon
2	max
3	kevin
4	olivier
6	hana
7	magnus
+----+----------+

INTERSECT & EXCEPT
Example

LAYOUT

Title Only
PowerPoint Default

SELECT id, name FROM nam INTERSECT SELECT
id, name FROM emea;
+----+-------+
| id | name |
+----+-------+
1	jon
2	max
3	kevin
+----+-------+

INTERSECT & EXCEPT
Example

• The names Jon, Max and Kevin are
included in both tables, nam and emea

LAYOUT

Title Only
PowerPoint Default

SELECT id, name FROM nam EXCEPT select id,
name FROM emea;
+----+-------+
| id | name |
+----+-------+
5	bill
8	matt
9	bob
11	craig
+----+-------+

INTERSECT & EXCEPT
Example

• The names Bill, Matt, Bob and Craig exist
in table nam, but not in table emea

LAYOUT

Title Only
PowerPoint Default

SELECT id, name FROM nam UNION select id, name FROM
emea;
+----+---------+
| id | name |
+----+---------+
1	jon
2	max
3	kevin
5	bill
8	matt
9	bob
11	craig
4	olivier
6	hana
7	magnus
+----+---------+

INTERSECT & EXCEPT
Example

• UNION (existed before 10.3) combines the
result from the first and second select

LAYOUT

Section Header (Dark)

Database Compatibility Enhancements

Invisible Columns

LAYOUT

Content with Caption
PowerPoint Default

Define Columns to
be invisible if not
explicitly queried

• Invisible columns allow to remove dependency to
applications
– columns can be added to tables with hiding them from the

application, which otherwise might fail to run
– keep historical columns not needed by applications anymore
– prepare the database level for an upgrade before an application

will be upgraded
– hide system created columns

• An enhanced syntax allows to define a column as “invisible”
– “select * from table” will not show columns, which are defined

invisible
– An explicit mentioning will show the column in a result set

• Creating a table with a column defined as invisible can be
NOT NULL, when DEFAULT is given

• An INSERT statement does not require a value to be
provided for a invisible column

LAYOUT

Title Only
PowerPoint Default

CREATE TABLE t (x INT, y INT INVISIBLE, z
INT INVISIBLE NOT NULL DEFAULT 0);

INSERT INTO t VALUES (1),(2);
INSERT INTO t (x,y) VALUES (3,33);
INSERT INTO t (x,y,z) VALUES (4,4,44);

Invisible Columns
Example

• Create a table t with invisible columns y
and z

– If NOT NULL is used a DEFAULT value has
to be defined

• For INSERT the invisible fields need to be
specified, if data will be added

LAYOUT

Title Only
PowerPoint Default

SELECT * FROM t;
+------+
| x |
+------+
| 1 |
| 2 |
| 3 |
| 4 |
+------+

Invisible Columns
Example

• Selecting from the table without specifying
the fields only shows visible fields

LAYOUT

Title Only
PowerPoint Default

SELECT x,y,z FROM t;
+------+------+---+
| x | y | z |
+------+------+---+
1	NULL	0
2	NULL	0
3	33	0
4	44	4
+------+------+---+

Invisible Columns
Example

• Selecting from the table with specifying the
fields y and z also shows invisible fields

LAYOUT

Title Only
PowerPoint Default

DESC t;
+-------+---------+------+-----+---------+-----------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-----------+
x	int(11)	YES		NULL	
y	int(11)	YES		NULL	INVISIBLE
z	int(11)	NO		4	INVISIBLE
+-------+---------+------+-----+---------+-----------+

Invisible Columns
Example

• Invisible columns are
marked in DESCRIBE in
the field “Extra”

LAYOUT

Section Header (Dark)

Database Compatibility Enhancements

PL/SQL Compatibility for
 MariaDB Stored Functions

LAYOUT

Content with Caption
PowerPoint Default

PL/SQL
Compatibility

• PL/SQL compatibility parser added for easier migration
from Oracle to MariaDB
– No need to migrate Oracle PL/SQL logic to SQL/PSM or to

the application layer, when migrating to MariaDB

• Compatibility “Oracle SQL Mode” is used when syntax is
not compatible to SQL/PSM standard
– sql_mode=’oracle’
– Existing SQL/PSM based Stored Functions can still be used

• Syntactic differences between SQL/PSM and PL/SQL are
addressed by the compatibility parser

for MariaDB Stored Functions
including packages

LAYOUT

Title Only
PowerPoint Default

Compatibility parser

• Set SQL_MODE to Oracle when creating a
Stored Procedure using the Oracle
PL/Syntax
– Understands a large subset of Oracle's

PL/SQL language instead of MariaDB's
traditional syntax for stored routines

• Syntax Error if wrong SQL mode was set

SET SQL_MODE=ORACLE;

CREATE PROCEDURE sp1 (p1 IN VARCHAR2,
 p2 OUT VARCHAR2)
IS
 v1 VARCHAR2(100);
BEGIN
 v1 := p1;
 p2 := v1;
END;

LAYOUT

Title Only
PowerPoint Default

MariaDB [test]> show create procedure sp1 \G
*************************** 1. row ***************************
 Procedure: sp1
 sql_mode:
PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ORACLE,NO_KEY_OPTIONS,NO_TABLE_OP
TIONS,NO_FIELD_OPTIONS,NO_AUTO_CREATE_USER
 Create Procedure: CREATE DEFINER="root"@"localhost" PROCEDURE "sp1"(p1
IN VARCHAR2,
 p2 OUT VARCHAR2)
IS
 v1 VARCHAR2(100);
BEGIN
 v1 := p1;
 p2 := v1;
END
character_set_client: utf8
collation_connection: utf8_general_ci
 Database Collation: latin1_swedish_ci
1 row in set (0.000 sec)

Compatibility parser

• The SQL mode is stored for
each stored procedure in
information_schema.routines
– MariaDB and Oracle syntax

based stored procedures can
be used in the same database

LAYOUT

Title Only
PowerPoint Default

CREATE PROCEDURE p1(param OUT INT)

<<label>>
 SELECT ...
...
GOTO label;

CREATE PROCEDURE p1 (a IN OUT INT)
AS
BEGIN
END;

CREATE PROCEDURE p1(OUT param INT)

label:
 SELECT ...
...
GOTO label;

CREATE PROCEDURE p1 (INOUT a INT)
AS
BEGIN
END;

Compatibility parser
Label and IN, OUT, INOUT

MariaDB Syntax Oracle Syntax

LAYOUT

Title Only
PowerPoint Default

EXIT [label] [WHEN bool_expr];

…

var := 10;

…

[<<label>>]
WHILE boolean_expression
 LOOP statement... END LOOP [label] ;

IF bool_expr THEN LEAVE label;

…

SET var = 10;

…

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

Compatibility parser
Other Examples

MariaDB Syntax Oracle Syntax

LAYOUT

Title and Content
PowerPoint Default

Compatibility parser data types

• VARCHAR2 - a synonym to VARCHAR

• NUMBER - a synonym to DECIMAL

• DATE (with time portion) - a synonym to DATETIME

• RAW - a synonym to VARBINARY

• CLOB - a synonym to LONGTEXT

• BLOB - a synonym to LONGBLOB

LAYOUT

Section Header (Dark)

Database Compatibility Enhancements

New Data Type functionality for Stored
Routines

LAYOUT

Title Only
PowerPoint Default

CREATE PROCEDURE p1()
BEGIN
 DECLARE a ROW (c1 INT, c2 VARCHAR(10));
 SET a.c1= 10;
 SET a.c2= 'test';
 INSERT INTO t1 VALUES (a.c1, a.c2);
END;
CALL p1();

Database Compatibility
ROW data type for stored routines

• A variable can be defined as of type ROW

– like creating a database table table

– as working with an array

ROW data type
<row type> ::= ROW <row type body>
<row type body> ::= <left paren> <field definition>

 [{ <comma> <field definition>
 }...] <right paren>

<field definition> ::= <field name> <data type>
<data type> ::= <predefined type>

LAYOUT

Title Only
PowerPoint Default

DECLARE tmp TYPE OF t1.a;

DECLARE rec1 ROW TYPE OF t1;

DECLARE rec2 ROW TYPE OF cur1;

Database Compatibility
TYPE OF and ROW TYPE OF for stored routines

• A variable can be declared to inherit its
type from an existing type or row type

– get the data TYPE OF a column in a table

– get the ROW data TYPE OF a table

– get the ROW data TYPE OF a cursor

LAYOUT

Title Only
PowerPoint Default

// without parameters
DECLARE cursor_name CURSOR FOR
select_statement;
OPEN cursor_name;DECLARE tmp TYPE OF

// with parameters
DECLARE cur CURSOR(pmin INT, pmax INT) FOR
SELECT a FROM t1 WHERE a BETWEEN pmin AND
pmax;
OPEN cur (select 1), (select 10);

Database Compatibility
Cursors with Parameters

• With MariaDB Server 10.3 it is now
possible to declare cursors with parameters

DECLARE cursor_name [cursor_formal_parameter [, ...]]
CURSOR FOR select_statement;

 <cursor_formal_parameter>::=name type [collate clause]

OPEN cursor_name [expression [, ...]];

LAYOUT

Section Header (Dark)

Analytics / Temporal data processing

System Versioned Tables with AS OF Query
enhancement

LAYOUT

Content with Caption
PowerPoint Default

Temporal Data
processing

• SQL support for time-related information
– The database can store all versions of stored records

• A table can be altered to enable, disable or remove system
versioned data - (transparent to existing applications)

• System versioned tables can be queried using
– AS OF to select data “as of” a given point in time
– BETWEEN .. AND to select data which has been visible in

between two point in times
– ALL to show current and all historical versions

• A new partitioning BY SYSTEM_TIME exists to partition data
separately for
– historical data
– currently valid data

• Historical data can be removed from a System versioned
table by a new syntax DELETE HISTORY

System Versioned Tables with
AS OF Query enhancement

LAYOUT

Content with Caption
PowerPoint Default

Temporal Data
processing

• System Versioned Tables are used for
– Data analysis (retrospective, trends etc.)
– Forensic discovery & legal requirements to store data for N

years (data auditing, OLTP with data history)
– Point-in-time recovery

• System Versioned Tables include timestamped versions of
the data in a table. This allows
– to track changes
– to compare data based on timestamps
– to visualize the development cycle of data and to create trends
– to audit the change of data

System Versioned Tables with
AS OF Query enhancement

LAYOUT

Title Only
PowerPoint Default

CREATE TABLE t(
 x INT,
 start_timestamp TIMESTAMP(6)
 GENERATED ALWAYS AS ROW START,
 end_timestamp TIMESTAMP(6)
 GENERATED ALWAYS AS ROW END,
 PERIOD FOR SYSTEM_TIME(start_timestamp,
end_timestamp)
) WITH SYSTEM VERSIONING;

System Version Tables
Creating the Table

• A System versioned table, according
to the SQL:2011, have

– two generated columns to define the
start and end time the data is valid
for

– a period definition

– the special table option clause
WITH SYSTEM VERSIONING

LAYOUT

Title Only
PowerPoint Default

CREATE TABLE t(
 x INT
) WITH SYSTEM VERSIONING;

SELECT x, ROW_START, ROW_END FROM t;

System Version Tables
Creating the Table

• MariaDB allows a simplified syntax,
when only the table option clause
WITH SYSTEM VERSIONING is used

– the two generated columns are
generated as invisible fields
row_start and row_end

– a period definition defined but
invisible

• To query the versioning fields
ROW_START and ROW_END, they have to
be listed in the SELECT

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

insert into emp
values (“Bill”, 1000, 10)

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

insert into emp
values (“Bill”, 1000, 10)

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

name salary dept

Bill 2000 10

update emp
set salary=2000
where name = “Bill”

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

insert into emp
values (“Bill”, 1000, 10)

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

name salary dept

Bill 2000 10

name salary dept

Bill 2000 20

update emp
set salary=2000
where name = “Bill”

update emp
set dept=20
where name = “Bill”

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

name salary dept

Bill 2000 10

name salary dept

Bill 2000 20

select * from emp where name = “Bill”

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

name salary dept

Bill 2000 10

name salary dept

Bill 2000 20

select * from emp where name = “Bill”

select *
from emp for system_time as of timestamp @t1
where name = “Bill”

LAYOUT

Title and Content
PowerPoint Default

AS OF Example

name salary dept

T0 T1 T2 T3

create table emp (
name varchar(30), salary int, dept int

) with system versioning

name salary dept

Bill 1000 10

name salary dept

Bill 2000 10

name salary dept

Bill 2000 20

select * from emp where name = “Bill”

select *
from emp for system_time as of timestamp @t2
where name = “Bill”

LAYOUT

Section Header (Dark)

User Flexibility

User Defined Aggregate Functions

LAYOUT

Content with Caption
PowerPoint Default

User Defined
Aggregate
Functions

• Aggregate functions are functions where the values of
multiple rows are grouped together to form a single value
of more significant meaning or measurement

• Aggregate functions are used with the GROUPED BY
clause and in Window functions

• MariaDB Server already provides common aggregate
functions like avg(), count(), max(), min(), std(), sum()

• User defined aggregate functions allows to create SQL
based functions for aggregations
– new CREATE AGGREGATE FUNCTION
– FETCH GROUP NEXT ROW as the essential instruction for

the aggregate

LAYOUT

Title and Content
PowerPoint Default

Custom Aggregate Functions

• Define functions that can be used for aggregation like SUM or AVG

CREATE AGGREGATE FUNCTION function_name (param, [param])
RETURNS return_type

BEGIN

 [variable declarations]

 DECLARE CONTINUE HANDLER FOR NOT FOUND RETURN ret_val;

 LOOP

 FETCH GROUP NEXT ROW; // next row from group

 [sql expressions ...]

 END LOOP;

END

• Can implement median, mode, etc.
select sum(price * volume), cust_median(price * volume)

from sales group by product;

LAYOUT

Section Header (Dark)

Storage Engine Enhancements

Sharding by integration of the Spider Storage
Engine

LAYOUT

Title Only
PowerPoint Default

• The Spider storage engine allows to shard
data over multiple MariaDB Server nodes

• A MariaDB Server acting as the Spider
Proxy Node

– Shards are defined by creating partitions

• Partitioned data is stored on the sharding
nodes

SQL Client
Application

MariaDB
Spider Proxy

MariaDB
Spider
Shards

Sharding by Spider Storage Engine

LAYOUT

Title and Content
PowerPoint Default

Spider Architecture

SQL Client
Application

MariaDB
Spider Proxy

MariaDB
Spider
Shards

Partitions as database links
without storing data

Engine Spider

Partitions sharded as
database nodes
Engine InnoDB

LAYOUT

Title and Content
PowerPoint Default

Spider Architecture

SQL Client
Application

MariaDB
Spider Proxy

MariaDB
Spider
Shards

Customer

A-H

I-P

Q-Z

Customer

A-H

Customer

I-P

Customer

Q-Z

LAYOUT

Content with Caption
PowerPoint Default

Sharding by Spider
Storage Engine

 MariaDB Server 10.3. includes the enhancements:
• Integration of the Vertical Partition Engine

– This allows partitioning by columns
• Engine condition pushdown support in the partition

engine to push down the engine condition to the data
nodes

• Multi range read support in the partition engine.
• Direct update/delete.

– This involves pushdown of updates and deletes to the data
nodes.

• Full Text Search support in the partition engine.
• Bulk access support in the partition engine.

Enhancements in
 MariaDB Server 10.3

LAYOUT

Content with Caption
PowerPoint Default

Sharding by
integration of the

Spider Storage
Engine

• Auto-increment data type support in the partition
engine

• Support for direct aggregation sums, min, max, avg
through the partition engine

• Support for child partition pruning in MyISAM Merge
tables through the partition engine.

• Option to log result errors

• Options to log stored procedure queries.

LAYOUT

Title and Content
PowerPoint Default

CREATE TABLE sharding(id INT NOT NULL, code VARCHAR(10),
PRIMARY KEY(id))
ENGINE=SPIDER COMMENT='user "backend", password "backend",
port "3306", table "sharding"'
PARTITION BY RANGE(id)
(

PARTITION p1 VALUES LESS THAN (100000)
COMMENT 'host "192.168.56.21"',
PARTITION p2 VALUES LESS THAN (200000)
COMMENT 'host "192.168.56.22"',
PARTITION p3 VALUES LESS THAN MAXVALUE
COMMENT 'host "192.168.56.23"'

);

Spider Example

192.168.56.21 192.168.56.22 192.168.56.23

LAYOUT

Title and Content
PowerPoint Default

CREATE TABLE sharding
(
 id INT NOT NULL,
 code VARCHAR(10),
 PRIMARY KEY(id)
) ENGINE=INNODB;

Spider Example

192.168.56.22 192.168.56.23192.168.56.21

Spider Node

CREATE TABLE sharding
(
 id INT NOT NULL,
 code VARCHAR(10),
 PRIMARY KEY(id)
) ENGINE=INNODB;

CREATE TABLE sharding
(
 id INT NOT NULL,
 code VARCHAR(10),
 PRIMARY KEY(id)
) ENGINE=INNODB;

LAYOUT

Title and Content
PowerPoint Default

INSERT INTO sharding VALUES
(90002,"shard1"),(100100,"shard2"),(200050,"shard3");

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+
| 100100 | shard2 |
+--------+--------+
| 200050 | shard3 |
+--------+--------+

Spider Example

192.168.56.21 192.168.56.22 192.168.56.23

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+

LAYOUT

Title and Content
PowerPoint DefaultSpider Example

192.168.56.22 192.168.56.23192.168.56.21

Spider Node

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 90002 | shard1 |
+--------+--------+

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 100100 | shard2 |
+--------+--------+

SELECT * FROM sharding;
+--------+--------+
| id | code |
+--------+--------+
| 200050 | shard3 |
+--------+--------+

LAYOUT

Section Header (Dark)

Proxy Layer Support for
 MariaDB Server

Client / Server authentication via a Proxy like
MariaDB MaxScale using a Server Proxy

Protocol Support

LAYOUT

Content with Caption
PowerPoint Default

Proxy Layer
Support for

 MariaDB Server

• MariaDB Server 10.3 allows a client to connect to the
Server via a proxy without the need to define user
privileges based on the host of the proxy
– The proxy protocol allows a proxy to provide the client IP

address to the server
– This simplifies the user management for clients, which can

connect directly to the Server and via Proxy.
– When introducing a proxy layer, client privileges do not

need to be changed

• When using the Audit Plugin and other logs, the logged
client IP address is now the real client IP and not the IP
from the proxy anymore.

• A new parameter controls the host IP address, which is
allowed to use the proxy protocol

LAYOUT

Content with Caption
PowerPoint Default

Other
Enhancements

• ADD INSTANT COLUMN for InnoDB
– needs to be the last column

• Set lock wait timeout per statement
– select ... for update [wait [n] | no_wait]
– lock table ... [wait [n] | no_wait]

• DELETE statement can delete from the table that is used
in a subquery in the WHERE clause

• UPDATE statements can use same source and target

• Compressed Columns

Performance, removed
limitations and more

Thank you

LAYOUT

Thank You (Dark)

