
Percona XtraBackup at Alibaba Cloud
Bo Wang

Alibaba Cloud

About me

• Bo Wang (Fungo Wang)

• Hangzhou, China

• Joined Alibaba Cloud at Apr 2014 after got Master’s in CS at Zhejiang University

• Senior Engineer at Alibaba Cloud, develop and maintain AliSQL, TokuDB,

XtraBackup, PolarDB

Agenda

1. ApsaraDB on Alibaba Cloud

2. How we use XtraBackup

3. How we improve XtraBackup

Agenda

1. ApsaraDB on Alibaba Cloud

ApsaraDB on Alibaba Cloud

• RDS for MySQL 5.1 (deprecated)

• RDS for MySQL 5.5

• RDS for MySQL 5.6

• RDS for MySQL 5.7

• RDS for MariaDB (10.3)

• RDS for MySQL 8 (expected in 2019)

Database As A Service, for your data safety, for your application stability

ApsaraDB on Alibaba Cloud

Backup is a fundamental facility, it's a basic requirement for our database
products.

Agenda

2. How we use XtraBackup

Backup Types

Our MySQL instances can be provisioned on physical machines or ECS VMs.

• Physical backup, used for physical machine instances (XtraBackup)
• Cloud disk snapshot, used for ECS VM instances (disk snapshot)

• Logical backup, an additional product feature available on user portal
(mysqldump)

Backup Strategies

• Full backup (incremental backup is in plan)
• Backup regularly on daily base, the cycle is configurable

• Stream backup, no intermediate temp files on local disk
• Stream to OSS (Object Storage Service)
• Stream between hosts, in some migrating/rebuilding scenarios

Backup Strategies

• Backup on slave node by default, can also on master node when slave

node is not available/suitable

• Backup result can be downloaded and recovered locally by our

customers, not locked by ApsaraDB

Backup/Recover Command

• Backup

• Download and extract

• Recover

• Restore

innobackupex --defaults-file=my.cnf --host=host --user=user --port=port --
password=pass --slave-info --stream=tar | gzip | backup_agent stream upload to OSS

backup_agent fetch from OSS | gzip | tar xvf -C restore_dir/

innobackupex --apply-log --use-memory=bp_memory_size restore_dir/

mv files to directories specified in my.cnf

Agenda

3. How we improve XtraBackup

Multiple Engines

• ApsaraDB provides multiple storage engines for MySQL, RXB can

backup data files in all these engines
• InnoDB

• MyISAM, CSV, ARCHIVE

• TokuDB

• MyRocks

Multiple Engines – Basic Principles

• Backup result must be recovered to a consistent point (binlog pos)
• Tables inside one storage engine

• Tables across all storage engines

• Server layer data (frm, par, etc.)

• Backup should avoid affecting mysqld as much as possible

• Each storage engine has its own characteristics, and should be fully

leveraged when design backup solution

Multiple Engines – Basic Principles

Multiple Engines – MyISAM

• MyISAM is a non-transactional storage engine, it is

simple compared to InnoDB

• No WAL and crash recover process, so the MYDs and

MYIs must be in clean/consistent state when copying

• A rough and brute way: freeze MyISAM engine

(FTWRL), then copy data

• Simple copy, no need to understand engine detail,

and no recover process when prepare

Multiple Engines – MyISAM

• FTWRL is too heavy, all engines are frozen (read only), and all tables are
closed (flush).
• This operation affects all engines, even they do not need it. InnoDB/TokuDB/MyRocks are

victims when copying MyISAM files

• The global lock is only needed to get consistent point

• Use a lightweight way, percona-server has backup locks (MDL):
• LOCK TABLES FOR BACKUP // block non-transactional IUD and all DDL

• LOCK BINLOG FOR BACKUP (freezing point) // block binlog position or

Exec_Master_Log_Pos advance

Multiple Engines – MyISAM

Multiple Engines – TokuDB

• A simple and brute way is treating TokuDB as

MyISAM

• Workable, but not acceptable

Multiple Engines – TokuDB
• TokuDB is a transactional storage engine, like InnoDB

• Sharp checkpoint, variable length block, COW at block level

• Use BTT (Block Translation Table) to maintain mapping between block number and block

coord(offset, size), BTT is persistent to disk by checkpoint

• Each FT data file contains two copy of data (two BTTs), at least one copy is valid and the data

corresponding to the very last checkpoint

• TokuDB redo log is like binlog, it’s logical log, so the engine data must be in consistent state

before applying redo log

• Checkpoint lock can grabbed by user to prevent server from performing checkpoint

header0 header1 btt bttblock1 block3block1 block2

nth chekpoint (n+1�th chekpoint

FT file layout

Multiple Engines – TokuDB

• Redo copying finished before copying data

• Use TokuDB sharp checkpoint and COW features,

hold TokuDB checkpoint lock while copying

TokuDB FT data.

• We may backup many future blocks, TokuDB can’t

see them when recover, treat them as garbage

(unused space). Because checkpoint is blocked,

and BTT is not flushed and updated.

Multiple Engines – TokuDB
• Holding checkpoint lock for a long time may be dangerous
• Long recover time if crash

• No checkpoint, no redo log purging, accumulated redo logs will occupy too much disk

space

• TokuDB redo logs and FT data files are copied at a coarse level (like

MyISAM), RXB do not understand TokuDB format. Redo log recovery is

performed by mysqld, not RXB(--apply-log).
• No validation for redo log entry, and FT block

• Limiting future feature development

Multiple Engines – TokuDB 2.0

• Checkpoint lock is too heavy, what we need is a FT snapshot. We add a FT

snapshot feature to TokuDB to relieve dependence on checkpoint

• Maintain a backup BTT in memory, which is a copy of latest checkpoint BTT,

block in backup BTT is protected and will not be free and reused

Multiple Engines – TokuDB 2.0

• Checkpoint lock is also needed, but hold
for a very short time.

• TokuDB backup procedure is symmetrical
with InnoDB

• TokuDB engine is embedded into RXB just

like InnoDB
• Redo log entry is verified

• Only copy necessary FT data
• Redo recover is performed by RXB�--

apply-log�

Multiple Engines – MyRocks

• MyRocks is a transactional storage engine, like InnoDB/TokuDB
• COW at file level (SST files), and MyRocks can create a snapshot to a

specified dir
• SET GLOBAL rocksdb_create_checkpoint = '/path/to/snapshost'

Multiple Engines – MyRocks

• SET GLOBAL rocksdb_create_checkpoint
= ‘/path/to/backup’, to create a snapshot

under backup dir, contains MyRocks data,
redo log and meta file.

• Currently, MyRocks data is handled at a

coarse level, RXB do not understand
MyRocks format, recover is performed by

mysqld.

Multiple Engines – All in one

Table Level Recover

• For PITR (Point-In-Time Recovery), the customer may want to recover just a few

tables. But the whole backup result file must be downloaded and recovered.

• The time to download backup result take the majority part in the whole recovery

procedure, so if we can fetch only the table needed, the PITR will be much

faster.

Table Level Recover

• The OSS file can be downloaded by specifying a position range (begin, end)
• RXB will generate a JSON meta file to expose the detail file organization in the

OSS file.

Table Level Recover

Table Level Recover

• The backup result is still a big OSS file
• Full backup recovery is not affected at all, just down load the whole file and perform

recovery

• Table level recovery can be achieved by downloading only the files needed, for

example to recovery table t1, t1.ibd, t1.frm, ibdata1, xtrabackup_logfile other meta info

files need to be downloaded.

• The recovery procedure will be also adjusted, such as to cleanup non-

existent table entries in system dictionary (actually PXB already had such
logic, we add some tuning).

Backup Result Validation

• There is no easy way to validating backup set until it is recovered and restored.

We design a validating mechanism from source(backup) to destination(restore).

Backup Result Validation

• The consistent area is the point to which

backup result will be recovered.

• Start a RR snapshot use a separate session

at consistent point, use this snapshot to

calculate table checksum.

• Table checksum result is put into backup

set and validated after restore.

Backup Result Validation

• Checksum is a disruptive operation (BP polluted, cold pages need IO)
• CHECKSUM ENGINE_NO_CACHE TABLE t1;
• set session rds_sql_max_iops =100;

• Stale records could not be purged if checksum take a very long time for big
instance.

• This validation mechanism is not enabled by default, only used for some selected sentinel
instance to validate that our whole backup/restore system is healthy.

• Only validating InnoDB table

Bulk Load Index Creation in 5.7

• Redo log recording is disabled for DDL, and flush tablespace buffer pages to
disk before DDL finishing to ensure crashing safe.

• PXB provides --lock-ddl-per-table to prevent DDL on table

An optimized (without redo logging) DDLoperation has been performed. All modified pages may not have
been flushed to the disk yet.

BEGIN;
SELECT * FROM t1 LIMIT 1;
backup t1;
SELECT * FROM t2 LIMIT 1;
backup t2;
…

UNLOCK TABLES;

Bulk Load Index Creation in 5.7

• MariaDB has a feature to switch on redo log recording for DDL, we ported to our

AliSQL 5.7 branch, and the RXB will enable redo log recodring for DDL at

beginning, and restore at finishing.

set global innodb_log_optimize_ddl = off;

Backuing…

set global innodb_log_optimize_ddl = @old_value;

Extract Common Datasink Lib

• Datasink is a pretty elegant mechanism/component
datasink.c
ds_archive.c
ds_blackhole.c
ds_buffer.c
ds_compress.c
ds_decrypt.c
ds_encrypt.c
ds_local.c
ds_stdout.c
ds_tmpfile2.c
ds_tmpfile.c
ds_xbstream.c

Extract Common Datasink Lib

• Datasinks can be chained together

MySQL
backup

PG
backup

Mongo
backup

Redis
backup

SQLServer
backup

PHP�GLVN�EXƈHU (QFU\SWLRQ [EVWUHDP

:� W1

W2 W3

&RPSUHVVLRQ

:� W1

W2 W3

FRPPRQ�EDFNXS�OLE

VWGRXW

VWGRXW

Extract Common Datasink Lib

• C lib (RDS for PG)

• Python lib (MongoDB)

Contribute to PXB Upstream

• Report bugs, and submit PR to PXB

• TokuDB backup feature is opensourced

https://github.com/alibaba/AliSQLBackup

