Sergei Petrunia,
Query Optimizer Developer
MariaDB Corporation

’ /
’“‘é‘mmmi‘ﬂ
et Ay

S S
- 43 A
! 1 L

in MariaDB 104

2019 MariaDB Develdpers_uﬁcohf\e

NS
_fj‘

KA
el

o

N

(]

WV
L

AN RNA

rence
- New York

JMariqDBj-'ﬁ_{]'.)

New Optimizer features in MariaDB 10.4

e Optimizer trace

e Sampling for histogram collection

e Rowid filtering

e New default settings

e Condition Pushdown into IN-subqueries

e Condition Pushdown from HAVING into WHERE

New default settings for statistics

Do use condition selectivity

-optimizer_use_condition_selectivity=1
+optimizer_use_condition_selectivity=4

1 Use
2 Use
3 Use
4 Use

selectivity of predicates as in MariaDB 5.5.

selectivity of all range predicates supported by indexes.
selectivity of all range predicates estimated without histogram.
selectivity of all range predicates estimated with histogram.

e Make use of EITS statistics (incl. Histograms if they are available)

-use_stat_tables=NEVER
+use_stat_tables=PREFERABLY_FOR_QUERIES

— But don't collect stats unless explicitly told to do so

Do build histograms when collecting EITS statistics

-histogram_size=0
+histogram_size=254
-histogram_type=SINGLE_PREC_HB
+histogram_type=SINGLE_PREC_HB

New default settings

Join buffer will auto-size itself

-optimize_join_buffer_size=0FF
+optimize_join_buffer_size=0N

— (can use ANALYZE for statements to see the size)

Use index statistics (cardinality) instead of records_in_range for large IN-lists

-eg_range_index_dive_limit=10
+eq_range_index_dive_limit=200

— Just following MySQL here

Sampling for |

Histograms in MariaDB

® Introduced in MariaDB 10.0
— Manual command to collect, ANALYZE ... PERSISTENT FOR ...
— Optimizer settings to use them
— Histogram is collected from ALL table data
* Other statistics (avg_frequency, avg_length), too.
® Results
- Afew users

— Histogram collection is expensive

* Cost of full table scan + full index scans, and even more than that

Histograms in MariaDB 10.4

® MariaDB 10.4
- “Bernoulli sampling” - roll the dice for each row
- Controlled with @@analyze_sample_percentage
* 100 (the default) — “use all data”
* 0 - (recommended) — “Determine sample ratio automatically”
® MySQL 8.0 also added histograms
— Uses Bernoulli sampling

- @@histogram_generation_max_mem_size=20MB.

® PostgreSQL has genuine random-jump sampling

- default_statistics_target

Histogram collection performance

See MDEV-17886, (TODO: Vicentiu's data?)
Both MariaDB and MySQL: ANALYZE for columns is as fast as full table scan.

ANALYZE TABLE PERSISTENT FOR COLUMNS (...) INDEXES ();

“Persistent for ALL” will also scan indexes

ANALYZE TABLE PERSISTENT FOR ALL;

PostgreSQL is much faster with genuine sampling

- Vicentiu’s has a task in progress for this.

Histogram precision

® MariaDB histograms are very compact
- min/max column values, then 1-byte or 2-byte bounds (SINGLE|DOUBLE_PREC_HB)
- 255 bytes per histogram => 128 or 255 buckets max.
e MySQL
- Histogram is stored as JSON, bounds are stored as values
- 100 Buckets by default, max is 1024
* In our tests, more buckets help in some cases
® PostgreSQL
- Histogram bounds stored as values
— 100 buckets by default, up to 10K allowed

® Testing is still in progress :-(, the obtained data varies.

Problem with correlated conditions

select ...
from order_items
where [shipdate='2015-12-15' AND item_name=christmas light'

'swimsuit'

® Possible selectivities
- MIN(1/n, 1/m)
- (1/n) * (1/m)
-0

Problem with correlated conditions

select
from order_items
where shipdate='2015-12-15' AND item_name=ﬂchristmas lightq

(‘ swimsuit 'W

e PostgreSQL: Multi-variate statistics
— Detects functional dependencies, coll=F(col2)
— Only used for equality predicates

- Also #DISTINCT(a,b)

e MariaDB: MDEV-11107: Use table check constraints in optimizer
- Stalled?

Histograms: conclusions

® 104

— Sampling makes ANALYZE TABLE ... PERSISTENT FOR COLUMNS
run at full-table-scan speed.

- @@analyze_sample_rows

® Further directions
— Do real sampling (in progress)
— More space for the histograms (?)

— Handle correlations (how?)

Optimizer trace

{

"steps": [

Optimizer trace —

"select#": 1,
"steps™: [
.)) "expanded_query": "/* select#1 */ select "t1"."coll” AS “coll’,’t1
Available in MySQL since MySQL 5.6 AS o2 from 1 where (11" co1 < 4
]
}
mysql> set optimizer_trace=1; 1
"join_optimization™: {
mysql> <query>; "select#": 1,
"steps™: [
mysql> select * from "condition_processing": {
-> information_schema.optimizer_trace; ‘condition™ "WHERE",
original_condition"; "(‘t1"."coll’ < 4)",
"steps™: [
{

"transformation™: "equality_propagation”,
"resulting_condition": "(‘t1".’coll” < 4)"

Now, similar feature in MariaDB },

"transformation": "constant_propagation",
"resulting_condition": "(‘'t1.’coll" < 4)"

h
{

"transformation": "trivial_condition_removal",
"resulting_condition": "(‘t1".’coll” < 4)"
}
]
}

}
{

.col2’

The goal is to understand the optimizer

® “Why was query plan X not chosen”

— Subquery was not converted into semi-join
* This would exceed MAX_ TABLES

— Subquery materialization was not used

* Different collations

- Ref acess was not used

* Incompatible collations

® What changed between the two hosts/versions

— diff trace_from_hostl trace from_host2

Developer point of view

The trace is always compiled in
RAIl-objects to start/end writing a trace
Disabled trace added ~1-2% overhead

Intend to add more tracing

— EXpect to get more output

Rowid filtering

What is PK-filter: in detalls

SELECT *

FROM orders JOIN f1ineitem ON o_orderkey=1 orderkey

WHERE 1_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
o_totalprice between 200000 and 230000;

Filter for lineitem table built with condition
1 shipdate BETWEEN '1997-01-01' AND '1997-06-30':

IS a container that contains primary keys of rows from 1lineitem which
1 _shipdate value satisfy the above condition.
JMcriqDB

What is PK-filter: in detalls

SELECT *

FROM orders JOIN f1ineitem ON o_orderkey=1 orderkey

WHERE 1_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
o_totalprice between 200000 and 230000;

Filter for lineitem table built with condition
1 shipdate BETWEEN '1997-01-01' AND '1997-06-30':

IS a container that contains primary keys of rows from 1lineitem which
1 _shipdate value satisfy the above condition.
JMcriqDB

What is PK-filter: in detalls

SELECT *

FROM orders JOIN [1ineitem ON o_orderkey=1_orderkey

WHERE 1_shipdate BETWEEN '1997-01-01' AND '1997-02-01' AND
o_totalprice > 200000;

1. Thereisindex 1_1_shipdate on
lineitem(1_shipdate)

What is PK-filter: in detalls

SELECT *

FROM orders JOIN f1ineitem ON o_orderkey=1 orderkey

WHERE 1_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
o_totalprice between 200000 and 230000;

Condition push'

How condition pushdown is made

SELECT ... SELECT ...
FROM t1 FROM t1
WHEREl‘a < 2] AND WHERE (a < 2) AND
a IN a IN
((
SELECT [C T cC
FROM t2 FROM t2
WHERE ... WHERE ... AND[(C < 2)]
GROUP BY c GROUP BY c

););
JMcriqDB

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	What is PK-filter: in details_clipboard0
	Slide 20
	What is PK-filter: in details
	What is PK-filter: in details_clipboard2
	Slide 23
	How condition pushdown is made_clipboard0
	Slide 25

