
Query Optimizer
in MariaDB 10.4

Sergei Petrunia,
Query Optimizer Developer
MariaDB Corporation

2019 MariaDB Developers Unconference
New York

New Optimizer features in MariaDB 10.4

● Optimizer trace

● Sampling for histogram collection

● Rowid filtering

● New default settings

● Condition Pushdown into IN-subqueries

● Condition Pushdown from HAVING into WHERE

New default settings

New default settings for statistics

-histogram_size=0
+histogram_size=254
-histogram_type=SINGLE_PREC_HB
+histogram_type=SINGLE_PREC_HB

-optimizer_use_condition_selectivity=1
+optimizer_use_condition_selectivity=4

1 Use selectivity of predicates as in MariaDB 5.5.
2 Use selectivity of all range predicates supported by indexes.
3 Use selectivity of all range predicates estimated without histogram.
4 Use selectivity of all range predicates estimated with histogram.

● Do use condition selectivity

● Make use of EITS statistics (incl. Histograms if they are available)
-use_stat_tables=NEVER
+use_stat_tables=PREFERABLY_FOR_QUERIES

– But don’t collect stats unless explicitly told to do so

● Do build histograms when collecting EITS statistics

New default settings

-eq_range_index_dive_limit=10
+eq_range_index_dive_limit=200

● Join buffer will auto-size itself

-optimize_join_buffer_size=OFF
+optimize_join_buffer_size=ON

● Use index statistics (cardinality) instead of records_in_range for large IN-lists

– Just following MySQL here

– (can use ANALYZE for statements to see the size)

Sampling for histograms

Histograms in MariaDB

● Introduced in MariaDB 10.0

– Manual command to collect, ANALYZE … PERSISTENT FOR …

– Optimizer settings to use them

– Histogram is collected from ALL table data

● Other statistics (avg_frequency, avg_length), too.

● Results

– A few users

– Histogram collection is expensive

● Cost of full table scan + full index scans, and even more than that

Histograms in MariaDB 10.4

● MariaDB 10.4

– “Bernoulli sampling” - roll the dice for each row

– Controlled with @@analyze_sample_percentage

● 100 (the default) – “use all data”

● 0 – (recommended) – “Determine sample ratio automatically”

● MySQL 8.0 also added histograms

– Uses Bernoulli sampling

– @@histogram_generation_max_mem_size=20MB.

● PostgreSQL has genuine random-jump sampling

– default_statistics_target

Histogram collection performance

● See MDEV-17886, (TODO: Vicentiu’s data?)

● Both MariaDB and MySQL: ANALYZE for columns is as fast as full table scan.

ANALYZE TABLE PERSISTENT FOR COLUMNS (...) INDEXES ();

● “Persistent for ALL” will also scan indexes

ANALYZE TABLE PERSISTENT FOR ALL;

● PostgreSQL is much faster with genuine sampling

– Vicentiu’s has a task in progress for this.

Histogram precision
● MariaDB histograms are very compact

– min/max column values, then 1-byte or 2-byte bounds (SINGLE|DOUBLE_PREC_HB)

– 255 bytes per histogram => 128 or 255 buckets max.

● MySQL

– Histogram is stored as JSON, bounds are stored as values

– 100 Buckets by default, max is 1024
● In our tests, more buckets help in some cases

● PostgreSQL

– Histogram bounds stored as values

– 100 buckets by default, up to 10K allowed

● Testing is still in progress :-(, the obtained data varies.

Problem with correlated conditions

● Possible selectivities

– MIN(1/n, 1/m)

– (1/n) * (1/m)

– 0

select ...
from order_items
where shipdate='2015-12-15' AND item_name='christmas light'

'swimsuit'

Problem with correlated conditions

● PostgreSQL: Multi-variate statistics

– Detects functional dependencies, col1=F(col2)

– Only used for equality predicates

– Also #DISTINCT(a,b)

● MariaDB: MDEV-11107: Use table check constraints in optimizer

– Stalled?

select ...
from order_items
where shipdate='2015-12-15' AND item_name='christmas light'

'swimsuit'

Histograms: conclusions

● 10.4

– Sampling makes ANALYZE TABLE … PERSISTENT FOR COLUMNS
run at full-table-scan speed.

– @@analyze_sample_rows

● Further directions

– Do real sampling (in progress)

– More space for the histograms (?)

– Handle correlations (how?)

Optimizer trace

Optimizer trace

● Available in MySQL since MySQL 5.6

mysql> set optimizer_trace=1;

mysql> <query>;

mysql> select * from
 -> information_schema.optimizer_trace;

 {
 "steps": [
 {
 "join_preparation": {
 "select#": 1,
 "steps": [
 {
 "expanded_query": "/* select#1 */ select `t1`.`col1` AS `col1`,`t1`.`col2`
AS `col2` from `t1` where (`t1`.`col1` < 4)"
 }
]
 }
 },
 {
 "join_optimization": {
 "select#": 1,
 "steps": [
 {
 "condition_processing": {
 "condition": "WHERE",
 "original_condition": "(`t1`.`col1` < 4)",
 "steps": [
 {
 "transformation": "equality_propagation",
 "resulting_condition": "(`t1`.`col1` < 4)"
 },
 {
 "transformation": "constant_propagation",
 "resulting_condition": "(`t1`.`col1` < 4)"
 },
 {
 "transformation": "trivial_condition_removal",
 "resulting_condition": "(`t1`.`col1` < 4)"
 }
]
 }
 },
 {

● Now, similar feature in MariaDB

The goal is to understand the optimizer
● “Why was query plan X not chosen”

– Subquery was not converted into semi-join

● This would exceed MAX_TABLES

– Subquery materialization was not used

● Different collations

– Ref acess was not used

● Incompatible collations

● What changed between the two hosts/versions

– diff trace_from_host1 trace_from_host2

Developer point of view
● The trace is always compiled in

● RAII-objects to start/end writing a trace

● Disabled trace added ~1-2% overhead

● Intend to add more tracing

– Expect to get more output

Rowid filtering

What is PK-filter: in details

SELECT *
FROM orders JOIN lineitem ON o_orderkey=l_orderkey
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
 o_totalprice between 200000 and 230000;

Filter for lineitem table built with condition

l_shipdate BETWEEN '1997-01-01' AND '1997-06-30':

is a container that contains primary keys of rows from lineitem which
l_shipdate value satisfy the above condition.

What is PK-filter: in details

SELECT *
FROM orders JOIN lineitem ON o_orderkey=l_orderkey
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
 o_totalprice between 200000 and 230000;

Filter for lineitem table built with condition

l_shipdate BETWEEN '1997-01-01' AND '1997-06-30':

is a container that contains primary keys of rows from lineitem which
l_shipdate value satisfy the above condition.

What is PK-filter: in details

SELECT *
FROM orders JOIN lineitem ON o_orderkey=l_orderkey
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-02-01' AND
 o_totalprice > 200000;

1. There is index i_l_shipdate on
lineitem(l_shipdate)

What is PK-filter: in details

2.

SELECT *
FROM orders JOIN lineitem ON o_orderkey=l_orderkey
WHERE l_shipdate BETWEEN '1997-01-01' AND '1997-06-30' AND
 o_totalprice between 200000 and 230000;

Condition pushdown...

SELECT ...
FROM t1
WHERE (a < 2) AND
 a IN
 (
 SELECT c
 FROM t2
 WHERE … AND (c < 2)
 GROUP BY c
);

How condition pushdown is made
SELECT ...
FROM t1
WHERE (a < 2) AND
 a IN
 (
 SELECT c
 FROM t2
 WHERE ...
 GROUP BY c
);

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	What is PK-filter: in details_clipboard0
	Slide 20
	What is PK-filter: in details
	What is PK-filter: in details_clipboard2
	Slide 23
	How condition pushdown is made_clipboard0
	Slide 25

