

Generic ALTER TABLE in MariaDB
CREATE TABLE ...; INSERT...SELECT; RENAME ...: DROP TABLE ...;

Retroactively named ALGORITHM=COPY in MySQL 5.6 and MariaDB 10.0

Until MariaDB 10.2.13 (MDEV-11415), lots of unnecessary undo logging (and the
infamous “commit every 10,000 rows™ hack to speed up crash recovery).

Inserting into each index one record at a time (very inefficient).
No sort buffer is being used inside InnoDB (other than the change buffer)

Writes a large amount of redo log for the second copy of the table.

https://jira.mariadb.org/browse/MDEV-11415

History of Native ALTER TABLE in InnoDB

Starting with InnoDB Plugin for MySQL 5.1

- “Fast index creation”. ADD [UNIQUE] INDEX, ADD PRIMARY KEY

 ALGORITHM=INPLACE starting with MySQL 5.6 and MariaDB 10.0

o Misleading name “inplace”;, some operations may rebuild the table!
m (ADD|DROP) COLUMN, ADD PRIMARY KEY, CHANGE...[NOT] NULL

o Some operations are instantaneous: rename column, change DEFAULT, ...

o Sometimes sloppily called “online” even when no concurrent DML is allowed

JMdriqDB

ALTER ONLINE TABLE

* InnoDB supports two classes of operations in online ALTER TABLE:
o ADD [UNIQUE] INDEX: create indexes without copying the table
o online table rebuild: ADD PRIMARY KEY or ADD, DROP, MODIFY columns
* |InnoDB refuses ALTER ONLINE TABLE or ALTER TABLE...LOCK=NONE if:
o AFULLTEXT or SPATIAL index is being created

o The table needs to be rebuilt while FULLTEXT or SPATIAL index are present

JMdriqDB

Instant ALTER TABLE Operations up to 10.3

10.0: Renaming columns, changing DEFAULT value
10.2: Extend VARCHAR In some cases: not VARCHAR (255) to VARCHAR (256)
10.3: ADD COLUMN (as the last column only), DROP CONSTRAINT

10.3.8 (MDEV-16330): Add or remove SYSTEM VERSIONING of a column

10.3.10 (MDEV-16328): change page compression level

10.3.x (MDEV-13301): Rename indexes (by DROP INDEX, ADD INDEX)

JMdriqDB

https://jira.mariadb.org/browse/MDEV-16330
https://jira.mariadb.org/browse/MDEV-16328
https://jira.mariadb.org/browse/MDEV-13301

10.4: Instant Change of Collation or Charset
Change character set or collation without copying table

e Change the collation only, e.g., latinl swedish ci to latinl german ci

e Change asei+itoalmestanything, ut£8mb3 to ut £8mb4, wes2towtft6, ...

o Unless the collation is compatible, we must drop/add any indexes on the columns.

o Unfortunately, columns declared as ascii or ucs2 allow invalid data

e The table may have to be copied in order to change the maximum length from
128 -255 bytes to more than 255 bytes;
Example: Change CHAR (85) or VARCHAR (85) from utf8mb3 to ut f8mb4

Sponsored by ServiceNow JMG riaDB

Instant Column Extension for InnoDB Tables

No change to file formats or data; for any ROW FORMAT

e 10.2: Any extension of VARCHAR except from <255 bytes to >255 bytes
e 10.4: Any extension of VARCHAR from <127 bytes or ROW RORMAT=REDUNDANT

e 10.x: Any extension of CHAR containing UTF-8 (or other variable-length charset), or
internally stored as variable-length

e These operations are compatible with old versions of MariaDB or MySQL.

Sponsored by ServiceNow JMG riaDB

Instant ALTER TABLE Operations in 10.4

Specific to the original ROW FORMAT=REDUNDANT

e |nstantly remove NOT NULL attribute, or extend any VARCHAR.

e Cancelled (MDEV-18627): Extend fixed-size columns (treat as variable-size)

0 TINYINT—SMALLINT—MEDIUMINT—INT—BIGINT; CHAR; VARCHAR—CHAR
e Uses 6+c or 6+2c¢ bytes of record header, storing all ¢c columns as variable-length.

o Later formats (MySQL 5.0.3+): 5+[log,(n+1)1+v to S5+llog,(n+1)1+2v bytes (v=c, n=c);
using extra space for variable-length or NULLable columns only. Minimum is 5 bytes.

Sponsored by ServiceNow JMG riaDB

https://jira.mariadb.org/browse/MDEV-18627

Short History of InnoDB ROW FORMAT

Originally, InnoDB had a record header of 6+c or 6+2c¢ bytes.
o Basically, each column was encoded as variable-length and allowing NULL.

MySQL 5.0.3 retroactively named the original format ROW FORMAT=REDUNDANT and
introduced a new default ROW FORMAT=COMPACT:

o 5-byte fixed header, “is null” bitmap (except for NOT NULL columns), encode the lengths
of variable-length fields only (using 1 or 2 bytes per field)

o CHAR (n) on UTF-8 is encoded like VARCHAR (n to 3n or 4n bytes)
o Must copy table to remove NOT NULL or to extend fixed-length columns.
InnoDB Plugin for MySQL 5.1 introduced DYNAMIC and (dead end) COMPRESSED:

o Based on COMPACT, but not storing 768-byte prefix of off-page columns.
innodb default row format=DYNAMIC since MariaDB 10.2

JMdriqDB

ALTER TABLE Improvements in MariaDB 10.3

« MDEV-13134 introduced syntax to avoid “surprise rebuilds”:

ALGORITHM=(INSTANT|NOCOPY)and SET alter algorithm=(instant|nocopy)

« MDEV-11369 introduced instant ADD COLUMN, limited to appending last

O

Both Alibaba and Tencent had developed something similar based on MySQL 5.6.

MariaDB supports also DEFAULT value expressions, with values stored in one place,
in a hidden metadata record at the start of the clustered index.

Does not support ROW FORMAT=COMPRESSED.

https://jira.mariadb.org/browse/MDEV-13134
https://jira.mariadb.org/browse/MDEV-11369

Example of Instant ADD COLUMN

CREATE TABLE t (1d INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t (id,u) VALUES(1,1), (2,2), (3,3);

id u

Example of Instant ADD COLUMN

CREATE TABLE t (1d INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t (id,u) VALUES(1,1), (2,2), (3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current timestamp (),
t TEXT CHARSET utf8 DEFAULT 'The gquick brown fox',
p POINT NOT NULL DEFAULT ST GeomFromText ('POINT (0 0)'"));

d t p
2017-11-10 12:14:00 | 'The quick brown fox' POINT(0 0)

2017-11-10 12:14:00 | 'The quick brown fox' POINT(0 0)

2017-11-10 12:14:.00 | 'The quick brown fox' POINT(0 0)

2017-11-10 12:14:00 | 'The quick brown fox' POINT(0 0)

Example of Instant ADD COLUMN

CREATE TABLE t (1d INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t (id,u) VALUES(1,1), (2,2), (3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current timestamp (),
t TEXT CHARSET utf8 DEFAULT 'The gquick brown fox',
p POINT NOT NULL DEFAULT ST GeomFromText ('POINT (0 0)'"));

UPDATE t SET t=NULL WHERE 1id=3;
i d t p

2017-11-10 12:14:00 | 'The quick brown fox' POINT(O 0)

2017-11-10 12:14:00 | 'The quick brown fox' POINT(0 0)

2017-11-10 12:14:.00 | 'The quick brown fox' POINT(0 0)

2017-11-10 12:14:00 POINT(0 0)

10.4: DROP, (ADD|MODIFY)...(FIRST|AFTER...)
Extends the 10.3 Instant ADD COLUMN metadata record with a BLOB

e Keeps the user record format unchanged; adds metadata for column mapping.

o Physically, do ADD COLUMN last in the clustered index records.

o DROP COLUMN will leave garbage in old records; new records will write NULL, empty
strings, or dummy fixed-length values.

e The format of secondary indexes remains completely unchanged.

e Replacing PRIMARY KEY (a,b) with PRIMARY KEY (b, a) must copy the table.

Sponsored by ServiceNow JMG riaDB

Basic Usage of Instant ALTER TABLE

By default, ALTER TABLE is instantaneous when possible

Use the FORCE keyword for the old-fashioned table rebuild, with the old-fashioned
(additional) limitations with regard to FULLTEXT INDEX and SPATIAL INDEX
FULLTEXT INDEX limits the ability to ADD, DROP columns or change their order

To monitor the number of avoided table rebuilds via using the metadata record:
SELECT variable value

FROM information schema.global status

WHERE varilable name = 'innodb instant alter column';

See also https://mariadb.com/resources/blog/instant-add-column-innodb

JMdriqDB

https://mariadb.com/resources/blog/instant-add-column-innodb

Record Changes for Instant ADD COLUMN

e An InnoDB table is a collection of indexes:

o Clustered index (ordered by PRIMARY KEY or similar); index-organized table

o Optional secondary indexes, pointing to clustered index keys
e In the clustered index leaf page records, we ADD COLUMN last:

o (PRIMARY KEY, DB TRX ID, DB ROLL PTR, non-virtual columns, added columns)
e How to tell if added columns are present?

o ROW_ FORMAT=REDUNDANT explicitly stores the number of index fields.

0 ROW FORMAT=COMPACT, ROW FORMAT=DYNAMIC will require bigger changes:
m Record header flag and optional field for “number of added columns”.
m Must store the original number of fields or columns somewhere.

Page Changes for Instant ALTER TABLE

e Rootpage: FIL PAGE TYPE INSTANT; PAGE INSTANT stores the original
(smaller, or with DROP COLUMN, bigger) number of clustered index fields

e At the start of the clustered index, store a metadata record with
REC INFO MIN REC FLAG and the optional “added columns™ header:

o The number of fields must match the current table definition
o Values of “added columns” are the values of “missing columns” in user records

o For DROP COLUMN, some original metadata is stored in a metadata BLOB

JMdriqDB

. TABLE
1 and
gines

Problems with Online Table Rebuild

Why are tools like GH-OST still used instead of ALTER ONLINE TABLE?

* Replication slave will only start after commit—huge lag (to be fixed in MDEV-11675)

 The online log needs to be buffered (in memory or temporary files)
o The size depends on the concurrent DML workload; hard to predict!

o Written before commit; DML duplicate key errors make also ALTER TABLE fall

Watch out for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

o Keep engine-native for ADD [UNIQUE] INDEX or ALGORITHM=INSTANT

MariaDB Server 10.5? JMG riaDB

https://jira.mariadb.org/browse/MDEV-11675
https://jira.mariadb.org/browse/MDEV-16329

Speeding up Bulk Operations in InnoDB

Needed for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

MDEV-515: InnoDB bulk insert into empty table or partition

o Speeds up mysgldump and many INSERT, REPLACE, LOAD DATA
o Works also for generic ALTER TABLE...ALGORITHM=COPY
o For recovery, just write 1 undo log record “truncate on rollback”

o Avoid or reduce redo logging; build indexes pre-sorted, page by page

m Similarto CREATE INDEXin MariaDB 10.2+

MariaDB Server 10.5? JMG riaDB

https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-16329

Format Tagging for Lazy Conversions
Avoid rebuilding or copying the table when changing data encodings

e Format changes can be instantaneous if they relax constraints:
o Change virtually anything to utf8 orutfl6;e.g.. _latinl Oxe4 = utf8 Oxc3a4

o Change INT UNSIGNED to BIGINT (unsigned to wider signed integer)

e These could be implemented with a per-record or per-page “format version tag” and
by converting records to the newest version whenever the data is being read.

e Affected secondary indexes must be rebuilt.

Speculation JMdrid DB

File Format Changes for Format Tagging
User data records (or pages) must indicate their physical format

“Format version number” that points to something in the hidden metadata record?

A prototype with “dual-format” clustered index leaf pages was implemented and
rejected due to the ROW FORMAT=REDUNDANT storage overhead

For any ROW FORMAT, we need additional metadata to indicate how to convert data
when reading or searching: e.g., latinl to utf8, INT to BIGINT

Do we want this? Could add significant memory and time overhead to DML!

Speculation JMdrid DB

ALGORITHM=NOCOPY with Validation (1/2)

Avoid copying the table even if the data could be incompatible

e Perform a locking table scan to validate the data.

o Example: i BIGINT NULL to INT UNSIGNED NOT NULL is OK if i>=0
o ALTER ONLINE TABLE actually conflicts with ALGORITHM=NOCOPY in this case!
o ALTER IGNORE TABLE would involve UPDATE of offending data.

e Affected secondary indexes must be rebuilt if the physical format changes

© ADD CONSTRAINT ... (CHECK|FOREIGN KEY) does not change format!

Speculation JMdrid DB

ALGORITHM=NOCOPY with Validation (2/2)

The Lifetime of an ALTER TARLE Transaction

1. Check constraints for each row, e.g., MODIFY i INT UNSIGNED:
O ALTER IGNORE would UPDATE offending data, e.g.: SET i=NULL WHERE 1i<0
2. DROP INDEX and ADD INDEX of affected indexes, or user-specified ones

3. Any additional operations that are part of the ALTER (say, instant DROP COLUMN)

4. Update the data dictionary

Speculation JMdrid DB

Summary

MariaDB 10.3 and 10.4 changed the InnoDB data format to allow instantaneous
(ADD|MODIFY) COLUMN...(FIRST|AFTER...), DROP. You can still FORCE a rebuild.

MariaDB 10.4 supports instant ALTER TABLE whenever it is technically possible
without changing the storage format further.

Future MariaDB versions might support instant ALTER TABLE or avoid copying
whenever technically possible. The current metadata format is extensible.

Use ALGORITHM=INSTANT or ALGORITHM=NOCOPY (or SET alter algorithm)
to get errors instead of unexpected DoS via excessive 1/O.

JMdriqDB

