
ALTER TABLE
Improvements in
MARIADB Server
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation

• Retroactively named ALGORITHM=COPY in MySQL 5.6 and MariaDB 10.0

• Until MariaDB 10.2.13 (MDEV-11415), lots of unnecessary undo logging (and the
infamous “commit every 10,000 rows” hack to speed up crash recovery).

• Inserting into each index one record at a time (very inefficient).

• No sort buffer is being used inside InnoDB (other than the change buffer)

• Writes a large amount of redo log for the second copy of the table.

Generic ALTER TABLE in MariaDB
CREATE TABLE …; INSERT…SELECT; RENAME …; DROP TABLE …;

https://jira.mariadb.org/browse/MDEV-11415

• “Fast index creation”: ADD [UNIQUE] INDEX, ADD PRIMARY KEY

• ALGORITHM=INPLACE starting with MySQL 5.6 and MariaDB 10.0

○ Misleading name “inplace”; some operations may rebuild the table!

■ (ADD|DROP) COLUMN, ADD PRIMARY KEY, CHANGE…[NOT] NULL

○ Some operations are instantaneous: rename column, change DEFAULT, …

○ Sometimes sloppily called “online” even when no concurrent DML is allowed

History of Native ALTER TABLE in InnoDB
Starting with InnoDB Plugin for MySQL 5.1

• InnoDB supports two classes of operations in online ALTER TABLE:

○ ADD [UNIQUE] INDEX: create indexes without copying the table

○ online table rebuild: ADD PRIMARY KEY or ADD, DROP, MODIFY columns

• InnoDB refuses ALTER ONLINE TABLE or ALTER TABLE…LOCK=NONE if:

○ A FULLTEXT or SPATIAL index is being created

○ The table needs to be rebuilt while FULLTEXT or SPATIAL index are present

ALTER ONLINE TABLE

Instant ALTER TABLE
in InnoDB

Instant ALTER TABLE Operations up to 10.3

● 10.0: Renaming columns, changing DEFAULT value

● 10.2: Extend VARCHAR in some cases: not VARCHAR(255) to VARCHAR(256)

● 10.3: ADD COLUMN (as the last column only), DROP CONSTRAINT

● 10.3.8 (MDEV-16330): Add or remove SYSTEM VERSIONING of a column

● 10.3.10 (MDEV-16328): change page_compression_level

● 10.3.x (MDEV-13301): Rename indexes (by DROP INDEX, ADD INDEX)

https://jira.mariadb.org/browse/MDEV-16330
https://jira.mariadb.org/browse/MDEV-16328
https://jira.mariadb.org/browse/MDEV-13301

10.4: Instant Change of Collation or Charset

● Change the collation only, e.g., latin1_swedish_ci to latin1_german_ci

● Change ascii to almost anything, utf8mb3 to utf8mb4, ucs2 to utf16, …

○ Unless the collation is compatible, we must drop/add any indexes on the columns.

○ Unfortunately, columns declared as ascii or ucs2 allow invalid data

● The table may have to be copied in order to change the maximum length from
128‥255 bytes to more than 255 bytes;
Example: Change CHAR(85) or VARCHAR(85) from utf8mb3 to utf8mb4

Change character set or collation without copying table

Sponsored by ServiceNow

Instant Column Extension for InnoDB Tables

● 10.2: Any extension of VARCHAR except from ≤255 bytes to >255 bytes

● 10.4: Any extension of VARCHAR from ≤127 bytes or ROW_RORMAT=REDUNDANT

● 10.x: Any extension of CHAR containing UTF-8 (or other variable-length charset), or
internally stored as variable-length

● These operations are compatible with old versions of MariaDB or MySQL.

No change to file formats or data; for any ROW_FORMAT

Sponsored by ServiceNow

● Instantly remove NOT NULL attribute, or extend any VARCHAR.

● Cancelled (MDEV-18627): Extend fixed-size columns (treat as variable-size)

○ TINYINT→SMALLINT→MEDIUMINT→INT→BIGINT; CHAR; VARCHAR→CHAR

● Uses 6+c or 6+2c bytes of record header, storing all c columns as variable-length.

○ Later formats (MySQL 5.0.3+): 5+⌈log2(n+1)⌉+v to 5+⌈log2(n+1)⌉+2v bytes (v≤c, n≤c);
using extra space for variable-length or NULLable columns only. Minimum is 5 bytes.

Instant ALTER TABLE Operations in 10.4
Specific to the original ROW_FORMAT=REDUNDANT

Sponsored by ServiceNow

https://jira.mariadb.org/browse/MDEV-18627

Short History of InnoDB ROW_FORMAT

● Originally, InnoDB had a record header of 6+c or 6+2c bytes.
○ Basically, each column was encoded as variable-length and allowing NULL.

● MySQL 5.0.3 retroactively named the original format ROW_FORMAT=REDUNDANT and
introduced a new default ROW_FORMAT=COMPACT:
○ 5-byte fixed header, “is null” bitmap (except for NOT NULL columns), encode the lengths

of variable-length fields only (using 1 or 2 bytes per field)
○ CHAR(n) on UTF-8 is encoded like VARCHAR (n to 3n or 4n bytes)
○ Must copy table to remove NOT NULL or to extend fixed-length columns.

● InnoDB Plugin for MySQL 5.1 introduced DYNAMIC and (dead end) COMPRESSED:
○ Based on COMPACT, but not storing 768-byte prefix of off-page columns.

● innodb_default_row_format=DYNAMIC since MariaDB 10.2

File Format Changes
to Avoid Rebuild for
Instant ALTER TABLE

• MDEV-13134 introduced syntax to avoid “surprise rebuilds”:
ALGORITHM=(INSTANT|NOCOPY) and SET alter_algorithm=(instant|nocopy)

• MDEV-11369 introduced instant ADD COLUMN, limited to appending last

○ Both Alibaba and Tencent had developed something similar based on MySQL 5.6.

○ MariaDB supports also DEFAULT value expressions, with values stored in one place,
in a hidden metadata record at the start of the clustered index.

○ Does not support ROW_FORMAT=COMPRESSED.

ALTER TABLE Improvements in MariaDB 10.3

https://jira.mariadb.org/browse/MDEV-13134
https://jira.mariadb.org/browse/MDEV-11369

Example of Instant ADD COLUMN

CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u

1 1

2 2

3 3

Example of Instant ADD COLUMN

CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u d t p

2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

1 1 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

2 2 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

3 3 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

Example of Instant ADD COLUMN

CREATE TABLE t(id INT PRIMARY KEY, u INT UNIQUE) ENGINE=InnoDB;
INSERT INTO t(id,u) VALUES(1,1),(2,2),(3,3);
ALTER TABLE t ADD COLUMN
(d DATETIME DEFAULT current_timestamp(),
 t TEXT CHARSET utf8 DEFAULT 'The quick brown fox',
 p POINT NOT NULL DEFAULT ST_GeomFromText('POINT(0 0)'));
UPDATE t SET t=NULL WHERE id=3;

id u d t p

2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

1 1 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

2 2 2017-11-10 12:14:00 'The quick brown fox' POINT(0 0)

3 3 2017-11-10 12:14:00 NULL POINT(0 0)

10.4: DROP, (ADD|MODIFY)…(FIRST|AFTER…)

● Keeps the user record format unchanged; adds metadata for column mapping.

○ Physically, do ADD COLUMN last in the clustered index records.

○ DROP COLUMN will leave garbage in old records; new records will write NULL, empty
strings, or dummy fixed-length values.

● The format of secondary indexes remains completely unchanged.

● Replacing PRIMARY KEY(a,b) with PRIMARY KEY(b,a) must copy the table.

Extends the 10.3 Instant ADD COLUMN metadata record with a BLOB

Sponsored by ServiceNow

Basic Usage of Instant ALTER TABLE

● By default, ALTER TABLE is instantaneous when possible
● Use the FORCE keyword for the old-fashioned table rebuild, with the old-fashioned

(additional) limitations with regard to FULLTEXT INDEX and SPATIAL INDEX
● FULLTEXT INDEX limits the ability to ADD, DROP columns or change their order

● To monitor the number of avoided table rebuilds via using the metadata record:
SELECT variable_value
FROM information_schema.global_status
WHERE variable_name = 'innodb_instant_alter_column';

● See also https://mariadb.com/resources/blog/instant-add-column-innodb

https://mariadb.com/resources/blog/instant-add-column-innodb

Record Changes for Instant ADD COLUMN

● An InnoDB table is a collection of indexes:
○ Clustered index (ordered by PRIMARY KEY or similar); index-organized table
○ Optional secondary indexes, pointing to clustered index keys

● In the clustered index leaf page records, we ADD COLUMN last:
○ (PRIMARY KEY, DB_TRX_ID, DB_ROLL_PTR, non-virtual columns, added columns)

● How to tell if added columns are present?
○ ROW_FORMAT=REDUNDANT explicitly stores the number of index fields.
○ ROW_FORMAT=COMPACT, ROW_FORMAT=DYNAMIC will require bigger changes:

■ Record header flag and optional field for “number of added columns”.
■ Must store the original number of fields or columns somewhere.

Page Changes for Instant ALTER TABLE

● Root page: FIL_PAGE_TYPE_INSTANT; PAGE_INSTANT stores the original
(smaller, or with DROP COLUMN, bigger) number of clustered index fields

● At the start of the clustered index, store a metadata record with
REC_INFO_MIN_REC_FLAG and the optional “added columns” header:

○ The number of fields must match the current table definition

○ Values of “added columns” are the values of “missing columns” in user records

○ For DROP COLUMN, some original metadata is stored in a metadata BLOB

Better ALTER TABLE
for Replication and
all Storage Engines

• Replication slave will only start after commit→huge lag (to be fixed in MDEV-11675)

• The online_log needs to be buffered (in memory or temporary files)

○ The size depends on the concurrent DML workload; hard to predict!

○ Written before commit; DML duplicate key errors make also ALTER TABLE fail

Watch out for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

○ Keep engine-native for ADD [UNIQUE] INDEX or ALGORITHM=INSTANT

Problems with Online Table Rebuild
Why are tools like GH-OST still used instead of ALTER ONLINE TABLE?

MariaDB Server 10.5?

https://jira.mariadb.org/browse/MDEV-11675
https://jira.mariadb.org/browse/MDEV-16329

MDEV-515: InnoDB bulk insert into empty table or partition

○ Speeds up mysqldump and many INSERT, REPLACE, LOAD DATA

○ Works also for generic ALTER TABLE…ALGORITHM=COPY

○ For recovery, just write 1 undo log record “truncate on rollback”

○ Avoid or reduce redo logging; build indexes pre-sorted, page by page

■ Similar to CREATE INDEX in MariaDB 10.2+

Speeding up Bulk Operations in InnoDB
Needed for MDEV-16329 Cross-Engine ALTER ONLINE TABLE

MariaDB Server 10.5?

https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-16329

Theoretical Limits of
Avoiding Copying in
ALTER TABLE

Format Tagging for Lazy Conversions

● Format changes can be instantaneous if they relax constraints:

○ Change virtually anything to utf8 or utf16; e.g.: _latin1 0xe4 ≙ _utf8 0xc3a4

○ Change INT UNSIGNED to BIGINT (unsigned to wider signed integer)

● These could be implemented with a per-record or per-page “format version tag” and
by converting records to the newest version whenever the data is being read.

● Affected secondary indexes must be rebuilt.

Avoid rebuilding or copying the table when changing data encodings

Speculation

File Format Changes for Format Tagging

● “Format version number” that points to something in the hidden metadata record?

● A prototype with “dual-format” clustered index leaf pages was implemented and
rejected due to the ROW_FORMAT=REDUNDANT storage overhead

● For any ROW_FORMAT, we need additional metadata to indicate how to convert data
when reading or searching: e.g., latin1 to utf8, INT to BIGINT

● Do we want this? Could add significant memory and time overhead to DML!

User data records (or pages) must indicate their physical format

Speculation

ALGORITHM=NOCOPY with Validation (1/2)

● Perform a locking table scan to validate the data.

○ Example: i BIGINT NULL to INT UNSIGNED NOT NULL is OK if i>=0

○ ALTER ONLINE TABLE actually conflicts with ALGORITHM=NOCOPY in this case!

○ ALTER IGNORE TABLE would involve UPDATE of offending data.

● Affected secondary indexes must be rebuilt if the physical format changes

○ ADD CONSTRAINT … (CHECK|FOREIGN KEY) does not change format!

Avoid copying the table even if the data could be incompatible

Speculation

ALGORITHM=NOCOPY with Validation (2/2)

1. Check constraints for each row, e.g., MODIFY i INT UNSIGNED:

○ ALTER IGNORE would UPDATE offending data, e.g.: SET i=NULL WHERE i<0

2. DROP INDEX and ADD INDEX of affected indexes, or user-specified ones

3. Any additional operations that are part of the ALTER (say, instant DROP COLUMN)

4. Update the data dictionary

The Lifetime of an ALTER TABLE Transaction

Speculation

Summary

● MariaDB 10.3 and 10.4 changed the InnoDB data format to allow instantaneous
(ADD|MODIFY) COLUMN…(FIRST|AFTER…), DROP. You can still FORCE a rebuild.

● MariaDB 10.4 supports instant ALTER TABLE whenever it is technically possible
without changing the storage format further.

● Future MariaDB versions might support instant ALTER TABLE or avoid copying
whenever technically possible. The current metadata format is extensible.

● Use ALGORITHM=INSTANT or ALGORITHM=NOCOPY (or SET alter_algorithm)
to get errors instead of unexpected DoS via excessive I/O.

