InnoDB
Status&Roadmap in
MariaDB

Marko Makela
Shanghai
November 2019



InnoDB Improvements in MariaDB 10.5

MDEV-19514 Defer change buffer merges until pages requested
— Prevents ‘random’ crashes due to change buffer corruption

MDEV-16264 Implement a work queue for InnoDB background tasks
— Removes a large number of InnoDB background threads
In progress: MDEV-18959 Engine transaction recovery through binlog
— Only fsync () the binlog on transaction commit, not InnoDB redo log
Planned: Remove innodb log optimize ddl (write full ALTER TABLE log)
— Enables MDEV-19738 Doublewrite buffer is unnecessarily used for newly (re)initialized pages



https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-19738

/0 Scalability Improvements

Not started: MDEV-16260 Scale the purge effort according to the workload
In progress: MDEV-12353/MDEV-14425 Efficient redo log record format
Early stages: MDEV-16526 Overhaul the InnoDB page flushing
— Blocks: MDEV-15058 Remove multiple InnoDB buffer pool instances
— In progress: MDEV-18115 Remove dummy tablespace for the redo log
In progress: MDEV-15528 Punch holes when pages are freed
— MDEV-12226 Avoid writes of freed (garbage) pages to InnoDB temporary tablespace
— MDEV-12227 Defer writes to the InnoDB temporary tablespace
Not started: MDEV-14481 Execute InnoDB crash recovery in the background



https://jira.mariadb.org/browse/MDEV-16260
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-16526
https://jira.mariadb.org/browse/MDEV-15058
https://jira.mariadb.org/browse/MDEV-18115
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-12226
https://jira.mariadb.org/browse/MDEV-12227
https://jira.mariadb.org/browse/MDEV-14481

Rewrite of 1/0 Subsystem
Page Flushing and Log Checkpoints



Write Dependencies and ACID

Log is written by mini-transactions, to atomically update pages.
— Transactional ACID (record locks, rollback, MVCC) builds upon this.
— Mini-transactions are totally ordered by LSN (log sequence number)
— A mini-transaction is durable if everything up to its LSN has been written to log
« A user transaction COMMIT is durable if the mini-transaction of is durable

Write-ahead logging: Must write log before dirty pages, at least up to the
FIL PAGE LSN of the dirty page that is about to be written

Log checkpoint: write dirty pages older than the checkpoint LSN
— Recovery will have to process log from the checkpoint LSN to last written LSN

MDEV-16264 Implement a common work queue... simplifies page flushing
— io submit () from only one thread, io getevents () from another



https://jira.mariadb.org/browse/MDEV-16264

Mini-Transactions: RW-Latches and Redo Logs

Index tree latch A mini-transaction commit
ﬂ/lini-TransactiorN (dict_index_t::lock): stores the log position (LSN) to
/ covers internal pages each changed page.
Memo:
Locks or —— Tablespace latch Recovery will redo changes:
Buffer-Fixes (fil_S].pace_t P latch): Apply log if the page LSN is
allocating/freeing pages older than the log record LSN.

Log Buffer pool page lush (after log written)
buf page t::oldest m

odification

Log Buffer

log sys.buf rite ahead (of page flush) to log (make durable)



Optimizing Log Writes

Current situation: Mutex contention: Any thread that issues writes can:
— write or fsync the log = contention on 1og sys.mutexor log sys.write mutex
— invoke 1og checkpoint () by log free check()
— Checkpoint is also initiated by master thread, and log writes by page writes!

Goal: Have a dedicated log writer task that is signalled by other threads

— Page flush skips “too new” pages instead of initiating&waiting for log flush
« Avoid mutex: log sys.last flushed lsn.load()

— Remove buf page t::newest modification andjustuse FIL. PAGE LSN
— Dedicated log checkpoint task
* log free check () would submit a task (if needed) and wait for completion
mtr t::commit () returns immediately (Just transfer themtr t::m 1log ownership);
user tasks can request a durable variant that waits

J MarioDB



Redo Log Format Redesign

Compact, extensible format, faster recovery



Planned Redo Log Changes in 10.5+

 MDEV-12353 Efficient redo log record format
— Done: Replace physio-logical log records with purely physical ones
— Removed: innodb log optimize ddl (write compact redo log for ALTER TABLE)
— Missing: Implement compact encoding for the remaining (physical) log records
« Redo log apply will be completely rewritten (no GPL dependency!)
— Opens possibility for “smart storage” a la Amazon Aurora or Alibaba PolarDB
« InnoDB writes only log (no page flushing, no log checkpoints!)
« InnoDB reads back pages as of a specified LSN. (Easy “flashback” to any time.)
« MDEV-14425 InnoDB redo log format for better performance
— ib logfileO will be a dummy file, or at most contain checkpoint information
— Write file create/delete/rename and checkpoint information into a separate file
— Two format options for the page-level log file:

« circular in-place log (similar to the current format)
 append-only log (periodically create new log files, allow log archiving)



https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425

Redo Log File Format (1/2)

Partitioning the log was considered and rejected in MDEV-14425
— Forces fsync () of all log files at COMMIT, destroying any performance benefit

Append-only, “stream of bytes” log file format to cover changes to pages
— Checksum at the end of each durable snippet (after possible compression)

— For more flexibility, make LSN count mini-transactions, not payload bytes
* mariabackup --incrementalcan write records to the redo log!
 mariabackup --preparecan be performed by normal server startup

Checkpoint information file:
— All files created, deleted, renamed, modified since the previous checkpoint
— Checkpoint LSNs and corresponding log file names and byte offsets
— Can contain multiple checkpoints, written sequentially

Can use MDEV-17084 Optimize append only files for NVDIMM



https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-17084

Redo Log File Format (2/2)

ib logfileO will just contain a special header that indicates new format
Checkpoint files will follow the pattern ib files.%06u

Page-level data files will follow the pattern ib log.%06u

— Each file will start with a header that identifies the creator version, and whether the file is
circular, or append-only

— Circular log file does no rotation and will write blocks, with LSN in the header
Checkpoint and log files may be rotated separately or in sync, upon reaching a configured
maximum size

— On rotation, a file with a “one bigger” suffix will be created. No renames!

— Use the existing infrastructure for log file rotation (Aria log, binlog)



Optimizing Write Performance

Smarter Page Writes, Fewer fsync ()



Optimizing Dirty Page Flushing

« Dedicated log checkpoint task kicks in when the checkpoint is too old

— Clustrix: active page flushing (concurrently with the normal page cleaners)
i. checkpoint lsn=log sys.lsr writeand fsync () thelog file
ii. S-latch page, write (Clustrix: X-latch, copy to a staging buffer for writing), unlatch
iii. Write all dirty pages and call fsync () or fdatasync () on the data files
iv. Write and fsync () the checkpoint information

— Clustrix: If right after completion, the circular log file is again too full, start another flushing
thread to increase effort
— Maybe active flushing is a bad idea (performance drop during checkpoint)
- Remove BUF FLUSH SINGLE PAGE

« Do we need separate batches BUF FLUSH LRU (w/ evict) or BUF FLUSH LIST?
— Can we always sort the buf pool->flush list like onrecovery (flush rbt)?



Reducing £sync () Operations

« fsync () of redo log persists important state changes (and any older writes)

— Binlog-driven transaction: Fake XA PREPARE in InnoDB (with £sync () ), then
write () ; £sync () binlog, and finally fake XA COMMIT without f£sync ()
« After MDEV-18959: Do binlog write () ; fsync () and COMMIT without fsync ()
— Without binlog: COMMIT, XA PREPARE, XA ROLLBACK, (SQL-level) XA COMMIT
« Setup a “fsync () completion” event that would send OK packet to client?

* (Better throughput if the client connection submits multiple transactions.)
e fsync () isoverkill for ‘write barriers’. Leverage 1liburing after 10.5?
— Before data page flush at LSN, we fsync () the write of log >LSN
— Before completing log checkpoint, we £sync () all data files

— Before binlog rotation (discarding the start of binlog), MDEV-18959 must fsync () the InnoDB
redo log up to the LSN of the first remaining commit in the binlog

J MarioDB


https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-18959

Longer-Term ldeas

What to improve in InnoDB after 10.5



More Performance and Flexibility (1/2)

Leverage 1iburing to avoid f£sync () for ‘write barriers’
Move things out of the system tablespace, to prepare for its removal
— MDEV-11634 Logical change buffer, exploited also for ROLLBACK
— MDEV-11659 Move the InnoDB doublewrite buffer to flat files
— MDEV-19506 Remove the global sequence DICT HDR ROW ID for DB ROW ID
— MDEV-15020 Store persistent statistics in . ibd file (or remove the code?)
— Note: InnoDB system tables will remain until MDEV-11655

MDEV-18518 Atomic CREATE of partitioned table; crash-safe DROP INDEX

MDEV-11658 Simpler, faster IMPORT of InnoDB tables

Improve record locks: MDEV-10962, MDEV-16406, MDEV-16232, MDEV-11215,
MDEV-20612; replace table locks with MDL?



https://jira.mariadb.org/browse/MDEV-11634
https://jira.mariadb.org/browse/MDEV-11659
https://jira.mariadb.org/browse/MDEV-19506
https://jira.mariadb.org/browse/MDEV-15020
https://jira.mariadb.org/browse/MDEV-11655
https://jira.mariadb.org/browse/MDEV-18518
https://jira.mariadb.org/browse/MDEV-11658
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-16406
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-11215
https://jira.mariadb.org/browse/MDEV-20612

More Performance and Flexibility (2/2)

Move FOREIGN KEY out of InnoDB: MDEV-12483, MDEV-10393, ...
Non-blocking COMMIT: Send OK packet after transaction is durable

— Allow interleaved execution of the next transaction while log flush is pending
MDEV-16232 Use fewer mini-transactions

— Implicit record locks in UPDATE, DELETE, INSERT..ODKU, REPLACE

— Remove the row prefetch buffer from InnoDB
MDEV-515 Bulk insert into empty table or partition (TRUNCATE on ROLLBACK)
MDEV-18746 Reduce the amount of mem heap create () ormalloc ()

ALTER TABLE: MDEV-16356 ADD CONSTRAINT, ALGORITHM=NOCOPY, MDEV-16281
parallel ADD INDEX, MDEV-9260 Improve progress reporting

J MarioDB


https://jira.mariadb.org/browse/MDEV-12483
https://jira.mariadb.org/browse/MDEV-10393
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-18746
https://jira.mariadb.org/browse/MDEV-16356
https://jira.mariadb.org/browse/MDEV-16281
https://jira.mariadb.org/browse/MDEV-9260

Thank you



