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InnoDB Improvements in MariaDB 10.5

• 10.5.0 MDEV-19514 Defer change buffer merges until pages requested
– Prevents ‘random’ crashes due to change buffer corruption

• 10.5.0 MDEV-16264 Implement a work queue for InnoDB background tasks
– Removes a large number of InnoDB background threads

• In progress: MDEV-18959 Engine transaction recovery through binlog
– Only fsync() the binlog on transaction commit, not InnoDB redo log

• Planned: Remove innodb_log_optimize_ddl (write full ALTER TABLE log)
– Enables MDEV-19738 Doublewrite buffer is unnecessarily used for newly (re)initialized pages

https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-19738
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I/O Scalability Improvements

• Not started: MDEV-16260 Scale the purge effort according to the workload
• In progress: MDEV-12353/MDEV-14425 Efficient redo log record format
• Early stages: MDEV-16526 Overhaul the InnoDB page flushing

– Blocks: MDEV-15058 Remove multiple InnoDB buffer pool instances
– In progress: MDEV-18115 Remove dummy tablespace for the redo log

• In progress: MDEV-15528 Punch holes when pages are freed
– MDEV-12226 Avoid writes of freed (garbage) pages to InnoDB temporary tablespace
– MDEV-12227 Defer writes to the InnoDB temporary tablespace

• Not started: MDEV-14481 Execute InnoDB crash recovery in the background

https://jira.mariadb.org/browse/MDEV-16260
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-16526
https://jira.mariadb.org/browse/MDEV-15058
https://jira.mariadb.org/browse/MDEV-18115
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-12226
https://jira.mariadb.org/browse/MDEV-12227
https://jira.mariadb.org/browse/MDEV-14481
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Rewrite of I/O Subsystem

Page Flushing and Log Checkpoints
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Write Dependencies and ACID

• Log is written by mini-transactions, to atomically update pages.
– Transactional ACID (record locks, rollback, MVCC) builds upon this.
– Mini-transactions are totally ordered by LSN (log sequence number)
– A mini-transaction is durable if everything up to its LSN has been written to log

• A user transaction COMMIT is durable if the mini-transaction of is durable

• Write-ahead logging: Must write log before dirty pages, at least up to the 
FIL_PAGE_LSN of the dirty page that is about to be written

• Log checkpoint: write dirty pages older than the checkpoint LSN
– Recovery will have to process log from the checkpoint LSN to last written LSN

• MDEV-16264 Implement a common work queue… simplifies page flushing
– io_submit() from only one thread, io_getevents() from another

https://jira.mariadb.org/browse/MDEV-16264


Mini-Transaction

Mini-Transactions: RW-Latches and Redo Logs

Memo:
Locks or 
Buffer-Fixes

Index tree latch 
(dict_index_t::lock): 
covers internal pages

Tablespace latch
(fil_space_t::latch): 
allocating/freeing pages

Log:
Page 
Changes Data Files

FIL_PAGE_LSN

Flush (after log written)

Redo Log Files
(ib_logfile*)Log Buffer

log_sys.buf
Write ahead (of page flush) to log (make durable)

Buffer pool page
buf_page_t::oldest_m
odification

commit

A mini-transaction commit 
stores the log position (LSN) to 
each changed page.

Recovery will redo changes: 
Apply log if the page LSN is 
older than the log record LSN.

Log 
position 
(LSN)
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Optimizing Log Writes

• Current situation: Mutex contention: Any thread that issues writes can:
– write or fsync the log ⇒ contention on log_sys.mutex or log_sys.write_mutex
– invoke log_checkpoint() by log_free_check()
– Checkpoint is also initiated by master thread, and log writes by page writes!

• Goal: Have a dedicated log writer task that is signalled by other threads
– Page flush skips “too new” pages instead of initiating&waiting for log flush

• Avoid mutex: log_sys.last_flushed_lsn.load()
– Remove buf_page_t::newest_modification and just use FIL_PAGE_LSN
– Dedicated log checkpoint task

• log_free_check() would submit a task (if needed) and wait for completion

• mtr_t::commit() returns immediately (just transfer the mtr_t::m_log ownership); 
user tasks can request a durable variant that waits
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Redo Log Format Redesign

Compact, extensible format, faster recovery
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Planned Redo Log Changes in 10.5+

• MDEV-12353 Efficient redo log record format
– Done: Replace physio-logical log records with purely physical ones
– Removed: innodb_log_optimize_ddl (write compact redo log for ALTER TABLE)
– Missing: Implement compact encoding for the remaining (physical) log records

• Redo log apply will be completely rewritten (no GPL dependency!)
– Opens possibility for “smart storage” à la Amazon Aurora or Alibaba PolarDB

• InnoDB writes only log (no page flushing, no log checkpoints!)
• InnoDB reads back pages as of a specified LSN. (Easy “flashback” to any time.)

• MDEV-14425 InnoDB redo log format for better performance
– ib_logfile0 will be a dummy file, or at most contain checkpoint information
– Write file create/delete/rename and checkpoint information into a separate file
– Two format options for the page-level log file:

• circular in-place log (similar to the current format)
• append-only log (periodically create new log files, allow log archiving)

https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425
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Redo Log File Format (1/2)

• Partitioning the log was considered and rejected in MDEV-14425
– Forces fsync() of all log files at COMMIT, destroying any performance benefit

• Append-only, “stream of bytes” log file format to cover changes to pages
– Checksum at the end of each durable snippet (after possible compression)
– For more flexibility, make LSN count mini-transactions, not payload bytes

• mariabackup --incremental can write records to the redo log!
• mariabackup --prepare can be performed by normal server startup

• Checkpoint information file:
– All files created, deleted, renamed, modified since the previous checkpoint
– Checkpoint LSNs and corresponding log file names and byte offsets
– Can contain multiple checkpoints, written sequentially

• Can use MDEV-17084 Optimize append only files for NVDIMM

https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-17084
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Redo Log File Format (2/2)

• ib_logfile0 will just contain a special header that indicates new format
• Checkpoint files will follow the pattern ib_files.%06u
• Page-level data files will follow the pattern ib_log.%06u

– Each file will start with a header that identifies the creator version, and whether the file is 
circular, or append-only

– Circular log file does no rotation and will write blocks, with LSN in the header
• Checkpoint and log files may be rotated separately or in sync, upon reaching a configured 

maximum size
– On rotation, a file with a “one bigger” suffix will be created. No renames!
– Use the existing infrastructure for log file rotation (Aria log, binlog)
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Optimizing Write Performance

Smarter Page Writes, Fewer fsync()
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Optimizing Dirty Page Flushing

• Dedicated log checkpoint task kicks in when the checkpoint is too old
– Clustrix: active page flushing (concurrently with the normal page cleaners)

i. checkpoint_lsn=log_sys.lsn; write and fsync() the log file
ii. S-latch page, write (Clustrix: X-latch, copy to a staging buffer for writing), unlatch
iii. Write all dirty pages and call fsync() or fdatasync() on the data files
iv. Write and fsync() the checkpoint information

– Clustrix: If right after completion, the circular log file is again too full, start another flushing 
thread to increase effort

– Maybe active flushing is a bad idea (performance drop during checkpoint)
• Remove BUF_FLUSH_SINGLE_PAGE
• Do we need separate batches BUF_FLUSH_LRU (w/ evict) or BUF_FLUSH_LIST?

– Can we always sort the buf_pool->flush_list like on recovery (flush_rbt)?



LAYOUT

Title and Content
PowerPoint Default

Reducing fsync() Operations

• fsync() of redo log persists important state changes (and any older writes)
– Binlog-driven transaction: Fake XA PREPARE in InnoDB (with fsync()), then 

write();fsync() binlog, and finally fake XA COMMIT without fsync()
• After MDEV-18959: Do binlog write();fsync() and COMMIT without fsync()

– Without binlog: COMMIT, XA PREPARE, XA ROLLBACK, (SQL-level) XA COMMIT
• Set up a “fsync() completion” event that would send OK packet to client?
• (Better throughput if the client connection submits multiple transactions.)

• fsync() is overkill for ‘write barriers’. Leverage liburing after 10.5?
– Before data page flush at LSN, we fsync() the write of log ≥LSN
– Before completing log checkpoint, we fsync() all data files
– Before binlog rotation (discarding the start of binlog), MDEV-18959 must fsync() the InnoDB 

redo log up to the LSN of the first remaining commit in the binlog

https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-18959
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Longer-Term Ideas 

What to improve in InnoDB after 10.5
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More Performance and Flexibility (1/2)

• Leverage liburing to avoid fsync() for ‘write barriers’
• Move things out of the system tablespace, to prepare for its removal

– MDEV-11634 Logical change buffer, exploited also for ROLLBACK
– MDEV-11659 Move the InnoDB doublewrite buffer to flat files
– MDEV-19506 Remove the global sequence DICT_HDR_ROW_ID for DB_ROW_ID
– MDEV-15020 Store persistent statistics in .ibd file (or remove the code?)
– Note: InnoDB system tables will remain until MDEV-11655

• MDEV-18518 Atomic CREATE of partitioned table; crash-safe DROP INDEX
• MDEV-11658 Simpler, faster IMPORT of InnoDB tables
• Improve record locks: MDEV-10962, MDEV-16406, MDEV-16232, MDEV-11215, 

MDEV-20612; replace table locks with MDL?

https://jira.mariadb.org/browse/MDEV-11634
https://jira.mariadb.org/browse/MDEV-11659
https://jira.mariadb.org/browse/MDEV-19506
https://jira.mariadb.org/browse/MDEV-15020
https://jira.mariadb.org/browse/MDEV-11655
https://jira.mariadb.org/browse/MDEV-18518
https://jira.mariadb.org/browse/MDEV-11658
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-16406
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-11215
https://jira.mariadb.org/browse/MDEV-20612
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More Performance and Flexibility (2/2)

• Move FOREIGN KEY out of InnoDB: MDEV-12483, MDEV-10393, …
• Non-blocking COMMIT: Send OK packet after transaction is durable

– Allow interleaved execution of the next transaction while log flush is pending
• MDEV-16232 Use fewer mini-transactions

– Implicit record locks in UPDATE, DELETE, INSERT…ODKU, REPLACE
– Remove the row prefetch buffer from InnoDB

• MDEV-515 Bulk insert into empty table or partition (TRUNCATE on ROLLBACK)
• MDEV-18746 Reduce the amount of mem_heap_create() or malloc()
• ALTER TABLE: MDEV-16356 ADD CONSTRAINT,ALGORITHM=NOCOPY, MDEV-16281 

parallel ADD INDEX, MDEV-9260 Improve progress reporting

https://jira.mariadb.org/browse/MDEV-12483
https://jira.mariadb.org/browse/MDEV-10393
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-18746
https://jira.mariadb.org/browse/MDEV-16356
https://jira.mariadb.org/browse/MDEV-16281
https://jira.mariadb.org/browse/MDEV-9260
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