
LAYOUT

Title Slide 
PowerPoint Default

InnoDB 
Status&Roadmap in 
MariaDB
Marko Mäkelä
Shanghai
November 2019



LAYOUT

Title and Content
PowerPoint Default

InnoDB Improvements in MariaDB 10.5

• 10.5.0 MDEV-19514 Defer change buffer merges until pages requested
– Prevents ‘random’ crashes due to change buffer corruption

• 10.5.0 MDEV-16264 Implement a work queue for InnoDB background tasks
– Removes a large number of InnoDB background threads

• In progress: MDEV-18959 Engine transaction recovery through binlog
– Only fsync() the binlog on transaction commit, not InnoDB redo log

• Planned: Remove innodb_log_optimize_ddl (write full ALTER TABLE log)
– Enables MDEV-19738 Doublewrite buffer is unnecessarily used for newly (re)initialized pages

https://jira.mariadb.org/browse/MDEV-19514
https://jira.mariadb.org/browse/MDEV-16264
https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-19738


LAYOUT

Title and Content
PowerPoint Default

I/O Scalability Improvements

• Not started: MDEV-16260 Scale the purge effort according to the workload
• In progress: MDEV-12353/MDEV-14425 Efficient redo log record format
• Early stages: MDEV-16526 Overhaul the InnoDB page flushing

– Blocks: MDEV-15058 Remove multiple InnoDB buffer pool instances
– In progress: MDEV-18115 Remove dummy tablespace for the redo log

• In progress: MDEV-15528 Punch holes when pages are freed
– MDEV-12226 Avoid writes of freed (garbage) pages to InnoDB temporary tablespace
– MDEV-12227 Defer writes to the InnoDB temporary tablespace

• Not started: MDEV-14481 Execute InnoDB crash recovery in the background

https://jira.mariadb.org/browse/MDEV-16260
https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-16526
https://jira.mariadb.org/browse/MDEV-15058
https://jira.mariadb.org/browse/MDEV-18115
https://jira.mariadb.org/browse/MDEV-15528
https://jira.mariadb.org/browse/MDEV-12226
https://jira.mariadb.org/browse/MDEV-12227
https://jira.mariadb.org/browse/MDEV-14481


LAYOUT

Section Header
PowerPoint Default

Rewrite of I/O Subsystem

Page Flushing and Log Checkpoints



LAYOUT

Title and Content
PowerPoint Default

Write Dependencies and ACID

• Log is written by mini-transactions, to atomically update pages.
– Transactional ACID (record locks, rollback, MVCC) builds upon this.
– Mini-transactions are totally ordered by LSN (log sequence number)
– A mini-transaction is durable if everything up to its LSN has been written to log

• A user transaction COMMIT is durable if the mini-transaction of is durable

• Write-ahead logging: Must write log before dirty pages, at least up to the 
FIL_PAGE_LSN of the dirty page that is about to be written

• Log checkpoint: write dirty pages older than the checkpoint LSN
– Recovery will have to process log from the checkpoint LSN to last written LSN

• MDEV-16264 Implement a common work queue… simplifies page flushing
– io_submit() from only one thread, io_getevents() from another

https://jira.mariadb.org/browse/MDEV-16264


Mini-Transaction

Mini-Transactions: RW-Latches and Redo Logs

Memo:
Locks or 
Buffer-Fixes

Index tree latch 
(dict_index_t::lock): 
covers internal pages

Tablespace latch
(fil_space_t::latch): 
allocating/freeing pages

Log:
Page 
Changes Data Files

FIL_PAGE_LSN

Flush (after log written)

Redo Log Files
(ib_logfile*)Log Buffer

log_sys.buf
Write ahead (of page flush) to log (make durable)

Buffer pool page
buf_page_t::oldest_m
odification

commit

A mini-transaction commit 
stores the log position (LSN) to 
each changed page.

Recovery will redo changes: 
Apply log if the page LSN is 
older than the log record LSN.

Log 
position 
(LSN)



LAYOUT

Title and Content
PowerPoint Default

Optimizing Log Writes

• Current situation: Mutex contention: Any thread that issues writes can:
– write or fsync the log ⇒ contention on log_sys.mutex or log_sys.write_mutex
– invoke log_checkpoint() by log_free_check()
– Checkpoint is also initiated by master thread, and log writes by page writes!

• Goal: Have a dedicated log writer task that is signalled by other threads
– Page flush skips “too new” pages instead of initiating&waiting for log flush

• Avoid mutex: log_sys.last_flushed_lsn.load()
– Remove buf_page_t::newest_modification and just use FIL_PAGE_LSN
– Dedicated log checkpoint task

• log_free_check() would submit a task (if needed) and wait for completion

• mtr_t::commit() returns immediately (just transfer the mtr_t::m_log ownership); 
user tasks can request a durable variant that waits



LAYOUT

Section Header
PowerPoint Default

Redo Log Format Redesign

Compact, extensible format, faster recovery



LAYOUT

Title and Content
PowerPoint Default

Planned Redo Log Changes in 10.5+

• MDEV-12353 Efficient redo log record format
– Done: Replace physio-logical log records with purely physical ones
– Removed: innodb_log_optimize_ddl (write compact redo log for ALTER TABLE)
– Missing: Implement compact encoding for the remaining (physical) log records

• Redo log apply will be completely rewritten (no GPL dependency!)
– Opens possibility for “smart storage” à la Amazon Aurora or Alibaba PolarDB

• InnoDB writes only log (no page flushing, no log checkpoints!)
• InnoDB reads back pages as of a specified LSN. (Easy “flashback” to any time.)

• MDEV-14425 InnoDB redo log format for better performance
– ib_logfile0 will be a dummy file, or at most contain checkpoint information
– Write file create/delete/rename and checkpoint information into a separate file
– Two format options for the page-level log file:

• circular in-place log (similar to the current format)
• append-only log (periodically create new log files, allow log archiving)

https://jira.mariadb.org/browse/MDEV-12353
https://jira.mariadb.org/browse/MDEV-14425


LAYOUT

Title and Content
PowerPoint Default

Redo Log File Format (1/2)

• Partitioning the log was considered and rejected in MDEV-14425
– Forces fsync() of all log files at COMMIT, destroying any performance benefit

• Append-only, “stream of bytes” log file format to cover changes to pages
– Checksum at the end of each durable snippet (after possible compression)
– For more flexibility, make LSN count mini-transactions, not payload bytes

• mariabackup --incremental can write records to the redo log!
• mariabackup --prepare can be performed by normal server startup

• Checkpoint information file:
– All files created, deleted, renamed, modified since the previous checkpoint
– Checkpoint LSNs and corresponding log file names and byte offsets
– Can contain multiple checkpoints, written sequentially

• Can use MDEV-17084 Optimize append only files for NVDIMM

https://jira.mariadb.org/browse/MDEV-14425
https://jira.mariadb.org/browse/MDEV-17084


LAYOUT

Title and Content
PowerPoint Default

Redo Log File Format (2/2)

• ib_logfile0 will just contain a special header that indicates new format
• Checkpoint files will follow the pattern ib_files.%06u
• Page-level data files will follow the pattern ib_log.%06u

– Each file will start with a header that identifies the creator version, and whether the file is 
circular, or append-only

– Circular log file does no rotation and will write blocks, with LSN in the header
• Checkpoint and log files may be rotated separately or in sync, upon reaching a configured 

maximum size
– On rotation, a file with a “one bigger” suffix will be created. No renames!
– Use the existing infrastructure for log file rotation (Aria log, binlog)



LAYOUT

Section Header
PowerPoint Default

Optimizing Write Performance

Smarter Page Writes, Fewer fsync()



LAYOUT

Title and Content
PowerPoint Default

Optimizing Dirty Page Flushing

• Dedicated log checkpoint task kicks in when the checkpoint is too old
– Clustrix: active page flushing (concurrently with the normal page cleaners)

i. checkpoint_lsn=log_sys.lsn; write and fsync() the log file
ii. S-latch page, write (Clustrix: X-latch, copy to a staging buffer for writing), unlatch
iii. Write all dirty pages and call fsync() or fdatasync() on the data files
iv. Write and fsync() the checkpoint information

– Clustrix: If right after completion, the circular log file is again too full, start another flushing 
thread to increase effort

– Maybe active flushing is a bad idea (performance drop during checkpoint)
• Remove BUF_FLUSH_SINGLE_PAGE
• Do we need separate batches BUF_FLUSH_LRU (w/ evict) or BUF_FLUSH_LIST?

– Can we always sort the buf_pool->flush_list like on recovery (flush_rbt)?



LAYOUT

Title and Content
PowerPoint Default

Reducing fsync() Operations

• fsync() of redo log persists important state changes (and any older writes)
– Binlog-driven transaction: Fake XA PREPARE in InnoDB (with fsync()), then 

write();fsync() binlog, and finally fake XA COMMIT without fsync()
• After MDEV-18959: Do binlog write();fsync() and COMMIT without fsync()

– Without binlog: COMMIT, XA PREPARE, XA ROLLBACK, (SQL-level) XA COMMIT
• Set up a “fsync() completion” event that would send OK packet to client?
• (Better throughput if the client connection submits multiple transactions.)

• fsync() is overkill for ‘write barriers’. Leverage liburing after 10.5?
– Before data page flush at LSN, we fsync() the write of log ≥LSN
– Before completing log checkpoint, we fsync() all data files
– Before binlog rotation (discarding the start of binlog), MDEV-18959 must fsync() the InnoDB 

redo log up to the LSN of the first remaining commit in the binlog

https://jira.mariadb.org/browse/MDEV-18959
https://jira.mariadb.org/browse/MDEV-18959


LAYOUT

Section Header
PowerPoint Default

Longer-Term Ideas 

What to improve in InnoDB after 10.5



LAYOUT

Title and Content
PowerPoint Default

More Performance and Flexibility (1/2)

• Leverage liburing to avoid fsync() for ‘write barriers’
• Move things out of the system tablespace, to prepare for its removal

– MDEV-11634 Logical change buffer, exploited also for ROLLBACK
– MDEV-11659 Move the InnoDB doublewrite buffer to flat files
– MDEV-19506 Remove the global sequence DICT_HDR_ROW_ID for DB_ROW_ID
– MDEV-15020 Store persistent statistics in .ibd file (or remove the code?)
– Note: InnoDB system tables will remain until MDEV-11655

• MDEV-18518 Atomic CREATE of partitioned table; crash-safe DROP INDEX
• MDEV-11658 Simpler, faster IMPORT of InnoDB tables
• Improve record locks: MDEV-10962, MDEV-16406, MDEV-16232, MDEV-11215, 

MDEV-20612; replace table locks with MDL?

https://jira.mariadb.org/browse/MDEV-11634
https://jira.mariadb.org/browse/MDEV-11659
https://jira.mariadb.org/browse/MDEV-19506
https://jira.mariadb.org/browse/MDEV-15020
https://jira.mariadb.org/browse/MDEV-11655
https://jira.mariadb.org/browse/MDEV-18518
https://jira.mariadb.org/browse/MDEV-11658
https://jira.mariadb.org/browse/MDEV-10962
https://jira.mariadb.org/browse/MDEV-16406
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-11215
https://jira.mariadb.org/browse/MDEV-20612


LAYOUT

Title and Content
PowerPoint Default

More Performance and Flexibility (2/2)

• Move FOREIGN KEY out of InnoDB: MDEV-12483, MDEV-10393, …
• Non-blocking COMMIT: Send OK packet after transaction is durable

– Allow interleaved execution of the next transaction while log flush is pending
• MDEV-16232 Use fewer mini-transactions

– Implicit record locks in UPDATE, DELETE, INSERT…ODKU, REPLACE
– Remove the row prefetch buffer from InnoDB

• MDEV-515 Bulk insert into empty table or partition (TRUNCATE on ROLLBACK)
• MDEV-18746 Reduce the amount of mem_heap_create() or malloc()
• ALTER TABLE: MDEV-16356 ADD CONSTRAINT,ALGORITHM=NOCOPY, MDEV-16281 

parallel ADD INDEX, MDEV-9260 Improve progress reporting

https://jira.mariadb.org/browse/MDEV-12483
https://jira.mariadb.org/browse/MDEV-10393
https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-515
https://jira.mariadb.org/browse/MDEV-18746
https://jira.mariadb.org/browse/MDEV-16356
https://jira.mariadb.org/browse/MDEV-16281
https://jira.mariadb.org/browse/MDEV-9260


Thank you

LAYOUT

Thank You


