Application-time periods in MariaDB

Nikita Malyavin
MariaDB Corporation
CREATE TABLE transactions (
 trans_id INT PRIMARY KEY,
 node INT,
 start TIMESTAMP(6),
 end TIMESTAMP(6));

<table>
<thead>
<tr>
<th>trans_id</th>
<th>node</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2020-02-02 01:02:03.00010</td>
<td>2020-02-02 01:02:03.23012</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2020-02-02 01:02:03.23202</td>
<td>2020-02-02 01:02:04.00118</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2020-02-02 01:02:03.00123</td>
<td>2020-02-02 01:02:04.567890</td>
</tr>
</tbody>
</table>
TABLES THAT HOLD A PERIOD

<table>
<thead>
<tr>
<th>trans_id</th>
<th>node</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2020-02-02 01:02:03.00010</td>
<td>2020-02-02 01:02:03.23012</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2020-02-02 01:02:03.23202</td>
<td>2020-02-02 01:02:04.00118</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2020-02-02 01:02:03.00123</td>
<td>2020-02-02 01:02:04.567890</td>
</tr>
</tbody>
</table>

CREATE TABLE transactions (
 trans_id INT PRIMARY KEY,
 node INT,
 start TIMESTAMP(6),
 end TIMESTAMP(6),
 CONSTRAINT(end > start)
 PERIOD FOR trans_time(start, end));
PERIODS: DATA MODEL

CREATE TABLE bookings(
 room INT,
 date_start DATE,
 date_end DATE,
 PERIOD FOR booking(date_start, date_end));
CREATE TABLE bookings(
 room INT,
 date_start DATE,
 date_end DATE,
 PERIOD FOR booking(date_start, date_end),
 UNIQUE(room, booking WITHOUT OVERLAPS));

<table>
<thead>
<tr>
<th>room</th>
<th>date_start</th>
<th>date_end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1408</td>
<td>2007-06-12</td>
<td>2007-06-13</td>
</tr>
<tr>
<td>1408</td>
<td>2020-01-30</td>
<td>2020-02-02</td>
</tr>
<tr>
<td>1337</td>
<td>2020-01-30</td>
<td>2020-02-02</td>
</tr>
<tr>
<td>1337</td>
<td>2021-01-30</td>
<td>2021-02-02</td>
</tr>
</tbody>
</table>
PERIODS: DATA MODEL

<table>
<thead>
<tr>
<th>trans_id</th>
<th>node</th>
<th>start</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2020-02-02 01:02:03.00010</td>
<td>2020-02-02 01:02:03.23012</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2020-02-02 01:02:03.23202</td>
<td>2020-02-02 01:02:04.00118</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2020-02-02 01:02:03.00123</td>
<td>2020-02-02 01:02:04.567890</td>
</tr>
</tbody>
</table>

CREATE TABLE transactions (
 trans_id INT PRIMARY KEY, node INT,
 start TIMESTAMP(6), end TIMESTAMP(6),
 PERIOD FOR trans_time(start, end),
 UNIQUE(node, trans_time WITHOUT OVERLAPS));
CREATE TABLE bookings(
 room INT,
 date_start DATE,
 date_end DATE,
 PERIOD FOR booking(date_start, date_end),
 UNIQUE(room, booking WITHOUT OVERLAPS));
PERIODS: DATA MODEL

CREATE TABLE bookings(
 room INT,
 date_start DATE,
 date_end DATE,
 PERIOD FOR booking(date_start, date_end),
 UNIQUE(room,
 booking WITHOUT OVERLAPS));
WITHOUT OVERLAPS: AN ALGORITHM

INSERT INTO bookings VALUES (1408, '2020-02-01', '2020-02-03');

Find the smallest date_end, such that

\[\text{date}_\text{end} > '2020-02-01' \]
WITHOUT OVERLAPS: AN ALGORITHM

```
INSERT INTO bookings VALUES (1408, '2020-02-01', '2020-02-03');
```

Find the smallest date_end, such that

```
date_end > '2020-02-01'
```

KEY(room, date_end) is enough
REFERENTIAL INTEGRITY

CREATE TABLE bookings(
 room INT,
 date_start TIMESTAMP(6),
 date_end TIMESTAMP(6),
 PERIOD FOR booking(date_start,
 date_end),
 FOREIGN KEY(room, PERIOD booking)
 REFERENCES prices(room,
 PERIOD term)
 UNIQUE(...));

CREATE TABLE prices(
 room INT,
 date_start TIMESTAMP(6),
 date_end TIMESTAMP(6),
 PERIOD FOR term(date_start,
 date_end),
 price INT,
 UNIQUE(room,
 term WITHOUT OVERLAPS));
prices

Jan 01 Jan 15 Feb 04 Feb 05 Feb 29

bookings
ALGORITHMS: DELETE

Find the smallest ref_end, such that
ref_end > del_start

KEY(..., del_end, del_start)

KEY(..., ref_end, ref_start)
ALGORITHMS: DELETE

Find the smallest ref_end, such that
ref_end > del_start

NO WITHOUT OVERLAPS!

R-TREE? 😞
ALGORITHMS: INSERT

Ensure that \((\text{ins}_\text{start}, \text{ins}_\text{end})\)
is continuous (i.e. no holes) in parent table.
ALGORITHMS: UPDATE

delete + insert
ALGORITHMS: UPDATE
ALGORITHMS: UPDATE

delete

insert
ARCHITECTURE

sql

insert_row() -> handler

update_row() -> handler

delete_row() -> handler

InnoDB

ColumnStore

MyISAM

RI constraint is implemented here
MOVING FOREIGN KEY TO SQL

- MDEV-20480 Obsolete internal parser for FK in InnoDB

- MDEV-16417 Store Foreign Key metadata outside of InnoDB
 - MDEV-20865 Store foreign key info in TABLE_SHARE
 - MDEV-21051 Store and read foreign key info into/from FRM files

work by Alexey Midenkov (midenok)
FUTURE

- Period operations (OVERLAPS, SUCCEEDS, PRECEDES, etc.)
- Views
- More than one period?
- Optimizations
- Cross-engine references