
eBPF and Dynamic Tracing for
MariaDB DBAs
(ftrace, bcc tools and bpftrace)

Valerii Kravchuk, Principal Support Engineer, MariaDB
valerii.kravchuk@mariadb.com

1

www.percona.com

Who am I?
Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005-2012
● Principal Support Engineer in Percona, 2012-2016
● Principal Support Engineer in MariaDB Corporation since March 2016
● http://mysqlentomologist.blogspot.com - my blog about MySQL and

MariaDB (a lot about MySQL bugs, but some HowTos as well)
● https://www.facebook.com/valerii.kravchuk - my Facebook page
● http://bugs.mysql.com - my personal playground
● @mysqlbugs #bugoftheday
● MySQL Community Contributor of the Year 2019
● I like FOSDEM (but this year my talks were not accepted…)

2

http://mysqlentomologist.blogspot.com
http://mysqlentomologist.blogspot.com/search/label/howto
https://www.facebook.com/valerii.kravchuk
http://bugs.mysql.com
https://twitter.com/mysqlbugs
https://www.percona.com/blog/2019/05/29/mysql-community-awards-at-percona-live-2019/
https://fosdem.org/2020/

www.percona.com

Sources of tracing and profiling info for MariaDB

● Trace files from -debug binaries, optimizer trace files
● Extended slow query log
● show [global] status;
● show engine innodb status\G
● show engine innodb mutex;
● InnoDB-related tables in the INFORMATION_SCHEMA
● userstat
● show profiles;
● PERFORMANCE_SCHEMA
● Profilers (even simple like pt-pmp or real like perf)
● OS-level tracing and profiling tools
● tcpdump analysis

3

https://www.percona.com/doc/percona-server/LATEST/diagnostics/slow_extended.html
https://mariadb.com/kb/en/library/information-schema-innodb-tables/
https://vividcortex.com/blog/2014/02/25/performance-schema-slowquery-log-tcp-sniffing/

www.percona.com

What is this session about?

● It’s about tracing and profiling MariaDB, and some OS level
tools MariaDB DBA can use for tracing and profiling in
production on recent Linux versions:
○ Some details about perf and adding dynamic probes
○ Few words about ftrace
○ Mostly about eBPF, bcc tools and bpftrace

● Why not about gprof, Callgrind, Massif, dtrace, SystemTap?
● Why not about Performance Schema? It’s disabled by

default in MariaDB, to begin with...
● Performance impact of tracing and profiling

4

https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://www.brendangregg.com/perf.html
https://www.slideshare.net/valeriikravchuk1/tracing-and-profiling-my-sql-percona-live-europe-2019-draft1
https://en.wikipedia.org/wiki/Ftrace
https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
https://users.cs.duke.edu/~ola/courses/programming/gprof.html
http://valgrind.org/docs/manual/cl-manual.html
http://valgrind.org/docs/manual/ms-manual.html
http://dtrace.org/blogs/brendan/2011/03/14/mysql-query-latency-with-the-dtrace-pid-provider/
http://www.slideshare.net/posullivan/monitoring-mysql-with-dtracesystemtap
https://mariadb.com/kb/en/performance-schema-overview/
https://www.slideshare.net/ValeriyKravchuk/applying-profilers-to-my-sql-fosdem-2017

www.percona.com

Why not about Performance Schema?

● It may be NOT enabled when server was started (the case
for MariaDB by default)

● Too much memory used (see MDEV-20216)
● Specific instruments may not be enabled at startup and

then it’s too late (see Bug #68097)
● Sizing instruments properly may be problematic
● Part of the code or 3rd party plugins may not be

instrumented at all or in enough details (see Bug #83912)
● It does not give you a system-wide profiling, just for

selected parts of MariaDB server code
● MariaDB Developers do not consider it much useful and

prefer to get stack traces...
● Not easy to use (large and complex queries)

5

https://jira.mariadb.org/browse/MDEV-20216
https://bugs.mysql.com/bug.php?id=68097
http://bugs.mysql.com/bug.php?id=83912

www.percona.com

Typical “profiling” query to Performance Schema

● This is how it may look like:
SELECT thread_id, event_id, nesting_event_id, CONCAT(CASE WHEN event_name
LIKE 'stage%' THEN
CONCAT(' ', event_name) WHEN event_name LIKE 'wait%' AND
nesting_event_id IS NOT NULL THEN CONCAT(' ', event_name) ELSE
IF(digest_text IS NOT NULL, SUBSTR(digest_text, 1, 64), event_name) END,
' (',ROUND(timer_wait/1000000000, 2),'ms) ') event
FROM (
 (SELECT thread_id,
 event_id, event_name, timer_wait, timer_start, nesting_event_id,
 digest_text FROM events_statements_history_long)
UNION
 (SELECT
 thread_id, event_id, event_name, timer_wait, timer_start,
 nesting_event_id, NULL FROM events_stages_history_long)
UNION
 (SELECT
 thread_id, event_id, event_name, timer_wait, timer_start,
 nesting_event_id, NULL FROM events_waits_history_long)
) events
ORDER BY thread_id, event_id;

6

www.percona.com

So, what do I suggest?
● Use modern(!) Linux tracing tools!
● Yes, all that kernel and user probes and tracepoints, ftrace, and perf, and

eBPF (via bcc tools and bpftrace), depending on Linux kernel version
● Julia Evans explains and illustrates them all here
● Brendan D. Gregg explains them all with a lot of details and examples:

7

http://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
http://www.brendangregg.com/

www.percona.com

Few words on strace: take care!
● strace may help MariaDB DBA to find out:

● what files are accessed by the mysqld process or utilities, and in what
order

● why some command (silently) fails or hangs
● why some commands end up with permission denied or other errors
● what signals MariaDB server and tools get
● what system calls could took a lot of time when something works slow
● when files are opened and closed, and how much data are read
● where the error log and other logs are really located (we can look for

system calls related to writing to stderr, for example)
● how MariaDB really works with files, ports and sockets

● See my blog post for more details
● Use in production as a last resort (2 interrupts per system call, even not

those we care about, may leave traced process hanged)
● strace surely slows server down

8

https://linux.die.net/man/1/strace
http://mysqlentomologist.blogspot.com/2017/12/using-strace-for-mysql-troubleshooting.html
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

www.percona.com

Few words on DTrace: forget about it...
● DTrace is “the father of tracing”... But probes are not in MariaDB by default
● full-system dynamic tracing framework originally developed by Sun

Microsystems (for Solaris)
● Until recently license issues prevented direct use of DTrace on Linux. Not

any more since 2018 (Oracle released it as GPL)
● As of Linux 4.9, the Linux kernel finally has similar raw capabilities as

DTrace. This is the culmination of many tracing projects and technologies
that were merged in the Linux kernel over the years, including: profiling and
perf_events, kernel static tracing (tracepoints), kernel dynamic tracing
(kprobes), and user dynamic tracing (uprobes).

● There is some “DTrace compatibility”. The Linux tracing ecosystem
developers decided to stay source-compatible with the DTrace API, so any
DTRACE_PROBE macros are automatically converted to USDT probes

● If you use Oracle Linux you can try it. Making it work on Fedora 29 took me
too much time to complete last year...

9

https://en.wikipedia.org/wiki/DTrace
https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#dtrace-the-father-of-tracing

www.percona.com

Few words on SystemTap: forget about it!
● SystemTap is a scripting language and tool for dynamically instrumenting

running Linux systems
● SystemTap files are written in the SystemTap language (saved as .stp files)

and run with the stap command-line Scripts (after some checks) are usually
compiled into a loadable kernel module (!). Consider risk here...

● SystemTap is a powerful tracer. It can do everything: profiling, tracepoints,
kprobes, uprobes (which came from SystemTap), USDT, in-kernel
programming, etc

● kernel debuginfo seems to be needed to use all features
● It helped a lot in some practical cases, like finding a process that sent signal

to MySQL server. Percona blog provides nice examples.

10

https://en.wikipedia.org/wiki/SystemTap
https://sourceware.org/systemtap/langref/1_SystemTap_overview.html
https://en.wikipedia.org/wiki/Loadable_kernel_module
https://www.percona.com/blog/2015/03/06/stopped-mysql-tracing-back-signals-sent-mysql/

www.percona.com

A lot about (tracing) events sources
● So, tracing is basically doing something whenever specific events occur
● Event data can come from the kernel or from userspace (apps and libraries).

Some of them are automatically available without further upstream
developer effort, others require manual annotations:

● Kprobe - the mechanism that allows tracing any function call inside the
kernel

● Kernel tracepoint - tracing custom events that the kernel developers have
defined (with TRACE_EVENT macros).

● Uprobe - for tracing userspace function calls
● USDT (e.g. DTrace probes) stands for Userland Statically Defined Tracing

11

Automatic Manual annotations

Kernel kprobes Kernel tracepoints

Userspace uprobes USDT

www.percona.com

On frontends to events sources
● Frontends are tools that allow users to easily make use of the event sources
● Frontends basically operate like this:

a. The kernel exposes a mechanism – typically some /proc or /sys file that
you can write to – to register an intent to trace an event and what should
happen when an event occurs

b. Once registered, the kernel looks up the location in memory of the
kernel/userspace function/tracepoint/USDT-probe, and modifies its code
so that something else happens. Yes, the code is modified on the fly!

c. The result of that "something else" can be collected later through some
mechanism (like reading from files).

● Usually you don't want to do all these by hand (with echo, cat and text
processing tools via ftrace)! Frontends do all that for you

● perf is a frontend
● bcc and related tools are frontends
● bpftrace is a frontend

12

https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#frontends
http://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/tree/master/tools

www.percona.com

Few words about ftrace: do not bother much...
● ftrace - “a kind of janky interface which is a pain to use directly”. Basically

there’s a filesystem at /sys/kernel/debug/tracing/ that lets you get various
tracing data out of the kernel. It supports kprobes, uprobes, kernel
tracepoints and UDST can be hacked.

● The way you fundamentally interact with ftrace is:
○ Write to files in /sys/kernel/debug/tracing/
○ Read output from files in /sys/kernel/debug/tracing/

[openxs@fc29 ~]$ sudo mount -t tracefs nodev /sys/kernel/tracing
[openxs@fc29 ~]$ sudo ls /sys/kernel/tracing/
available_events kprobe_profile stack_trace
available_filter_functions max_graph_depth stack_trace_filter
…
[openxs@fc29 ~]$ sudo cat /sys/kernel/tracing/uprobe_events
p:probe_mysqld/dc /home/openxs/dbs/maria10.3/bin/mysqld:0x00000000005c7c93
p:probe_mysqld/dc_1
/home/openxs/dbs/maria10.3/bin/mysqld:0x00000000005c7bb0

● Usually is used via some tool (like trace-cmd), not directly
13

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ftrace
http://www.brendangregg.com/blog/2015-07-03/hacking-linux-usdt-ftrace.html
https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
https://lwn.net/Articles/410200/

www.percona.com

Few words about ftrace: if you want to… go for it!
● ftrace - let’s try to add uprobe for dispatch_command() that prints SQL
● Tricky steps are to get probe address (it may be more complex):

openxs@ao756:~$ objdump -T /home/openxs/dbs/maria10.3/bin/mysqld | grep
dispatch_command
0000000000587b90 g DF .text 000000000000236e Base
_Z16dispatch_command19enum_server_commandP3THDPcjbb

● ...and to work with function arguments (do you know how they are passed?)
root@ao756:~# echo 'p:dc /home/openxs/dbs/maria10.3/bin/mysqld:0x0000000000587b90
query=+0(%dx):string' > /sys/kernel/debug/tracing/uprobe_events
root@ao756:~# echo 1 > /sys/kernel/debug/tracing/events/uprobes/dc/enable
root@ao756:~# echo 1 > /sys/kernel/debug/tracing/tracing_on
root@ao756:~# cat /sys/kernel/debug/tracing/trace_pipe
 mysqld-1082 [000] d... 273258.971401: dc: (0x560d8a20fb90) query="select
@@version_comment limit 1"
 mysqld-1082 [001] d... 273269.128542: dc: (0x560d8a20fb90) query="select
version()"

● You can try to do this even with 2.6.27+ kernels (but better 4.x+)
● More details in my recent blog post
● Or just check/use uprobe from Brendan Gregg’s ftrace-based perf-tools

14

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/trace/uprobetracer.rst
http://mysqlentomologist.blogspot.com/2020/01/dynamic-tracing-of-mariadb-server-with_25.html
https://github.com/brendangregg/perf-tools/blob/master/examples/uprobe_example.txt
https://github.com/brendangregg/perf-tools

www.percona.com

A lot about eBPF: extended Berkeley Packet Filter
● eBPF is a tiny language for a VM that can be executed inside Linux Kernel. eBPF instructions can

be JIT-compiled into a native code. eBPF was originally conceived to power tools like tcpdump and
implement programmable network packed dispatch and tracing. Since Linux 4.1, eBPF programs
can be attached to kprobes and later - uprobes, enabling efficient programmable tracing

● Brendan Gregg explained it here:

15

https://lwn.net/Articles/740157/
http://www.brendangregg.com/ebpf.html

www.percona.com

A lot about eBPF
● Julia Evans explained it here:

1. You write an “eBPF program” (often in C, Python or use a tool that generates that program
for you) for LLVM. It’s the “probe”.

2. You ask the kernel to attach that probe to a kprobe/uprobe/tracepoint/dtrace probe
3. Your program writes out data to an eBPF map / ftrace / perf buffer
4. You have your precious preprocessed data exported to userspace!

● eBPF is a part of any modern Linux (4.9+):
4.1 - kprobes
4.3 - uprobes (so they can be used on Ubuntu 16.04+)
4.6 - stack traces, count and hist builtins (use PER CPU maps for accuracy and efficiency)
4.7 - tracepoints
4.9 - timers/profiling

● You don’t have to install any kernel modules
● You can define your own programs to do any fancy aggregation you want so

it’s really powerful
● You’d usually use it with some existing bcc frontend.
● Recently a very convenient bpftrace frontend was added

16

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ebpf
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins-2
https://github.com/iovisor/bcc

www.percona.com

Examples of bcc tools in action: tplist
● https://github.com/iovisor/bcc/blob/master/tools/tplist.py
● This tool displays kernel tracepoints or USDT probes and their formats
● Let me apply it to current MariaDB 10.3.x on Fedora 29 (Fedora build!):

[openxs@fc29 mysql-server]$ s udo /usr/share/bcc/tools/tplist -l
/usr/libexec/mysqld | more

b'/usr/libexec/mysqld' b'mysql':b'connection__done'
b'/usr/libexec/mysqld' b'mysql':b'net__write__start'
b'/usr/libexec/mysqld' b'mysql':b'net__write__done'
b'/usr/libexec/mysqld' b'mysql':b'net__read__start'
b'/usr/libexec/mysqld' b'mysql':b'net__read__done'
b'/usr/libexec/mysqld' b'mysql':b'query__exec__start'
b'/usr/libexec/mysqld' b'mysql':b'query__exec__done'
...

● We get these USDT as they were added to the code when DTrace static
probes were added. See also readelf -n.

● MariaDB does NOT care about DTrace any more, but probes are there
(--DENABLE_DTRACE=1). Not in MySQL 8.0.1+ it seems

17

https://github.com/iovisor/bcc/blob/master/tools/tplist.py

● https://github.com/iovisor/bcc/blob/master/tools/mysqld_qslower.py
● Depends on query__start and query__done UDST probes!
● USAGE: mysqld_qslower PID [min_ms]
● By defaults logs queries slower than 1 millisecond. Set to 0 to have all

queries logged. Does not seem to work with prepared statements!
● Let me apply it to current MariaDB 10.3.18 on Fedora 29:

[openxs@fc29 tmp]$ sudo /usr/share/bcc/tools/mysqld_qslower `pidof
mysqld`
Tracing MySQL server queries for PID 4642 slower than 1 ms...
TIME(s) PID MS QUERY
...
0.698114 5955 3546.324 INSERT INTO sbtest3(k, c, pad)
VALUES(501130,
'64733237507-56788752464-03679578678-53343296505-31167207241-1060305090
1-641486789
4.251413 5955161.330 INSERT INTO sbtest3(k, c, pad) VALUES(503408,
'77033721128-77169379656-02480595704-40686156292-96586631730-5187073598
2-037677765

● Now run sysbench and measure the impact of this logging vs other options :)

www.percona.com

Examples of bcc tools in action: mysqld_qslower

18

https://github.com/iovisor/bcc/blob/master/tools/mysqld_qslower.py

Examples of bcc tools in action: trace
● https://github.com/iovisor/bcc/blob/master/tools/trace.py
● Trace a function and print a trace message based on its parameters, with an

optional filter.
● Let me apply it to current MariaDB 10.3.x on Fedora 29 to get queries

without any UDST used (by adding uprobe). I’ll attach to function
(dispatch_command) and print its 3rd parameter:
nm -na /home/openxs/dbs/maria10.3/bin/mysqld | grep dispatch_command
…
00000000005c5180 T _Z16dispatch_command19enum_server_commandP3THDPcjbb
sudo /usr/share/bcc/tools/trace
'p:/home/openxs/dbs/maria10.3/bin/mysqld:_Z16dispatch_command19enum_serv
er_commandP3THDPcjbb "%s" arg3'
PID TID COMM FUNC -
26140 26225 mysqld
_Z16dispatch_command19enum_server_commandP3THDPcjbb b'select 2'

● It seems you have to use mangled name and access to structures may not
work easily. See this my blog post for some more details.

19

https://github.com/iovisor/bcc/blob/master/tools/trace.py
http://mysqlentomologist.blogspot.com/2020/01/dynamic-tracing-of-mariadb-server-with.html

What about bpftrace?
● https://github.com/iovisor/bpftrace
● bpftrace (frontend with programming language) allows to do what I did with

trace utility above, but easier and more flexible
● You need recent enough kernel (not available on Ubuntu 16.04), 5.x.y ideally

20

https://github.com/iovisor/bpftrace
https://www.mankier.com/8/bpftrace
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2019/10/dynamic-tracing-of-mariadb-server-with.html

Study at least one-liner bpftrace examples

● https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.
md

● Command line options
-l | -e ‘program’ | -p PID | -c CMD | --unsafe | -d | -dd | -v

● Listing probes that match a template:
bpftrace -l 'tracepoint:syscalls:sys_enter_*'

● Tracing file opens may look as follows:
bpftrace -e 'tracepoint:syscalls:sys_enter_openat \
{ printf("%s %s\n", comm, str(args->filename)); }'

● Syntax is basic:
probe[,probe,...] [/filter/] { action }

● For me the language resembles awk and I like it
● More from Brendan Gregg (as of August 2019) on it is here
● “Bpftrace is wonderful! Bpftrace is the future!”

21

https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://opensource.com/article/19/8/introduction-bpftrace
https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#what-trace-points-are-available-what-should-i-trace

Getting stack traces with bpftrace

● See ustack() etc in the Reference Guide
● This is how we can use bpftrace as a poor man’s profiler:

sudo bpftrace -e 'profile:hz:99 /comm == "mysqld"/
{printf("# %s\n", ustack(perf));}' > /tmp/ustack.txt

● We get output like this by default (perf argument adds address etc):
...
mysqld_stmt_execute(THD*, char*, unsigned int)+37
dispatch_command(enum_server_command, THD*, char*,
unsigned int, bool, bool)+5123
do_command(THD*)+368
tp_callback(TP_connection*)+314
worker_main(void*)+160
start_thread+234

● See my recent blog post for more details on what you may want to do next :)

22

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#16-ustack-stack-traces-user
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2020/01/using-bpftrace-on-fedora-29-more.html

Performance impact of pt-pmp vs perf vs bpftrace

● Consider sysbench (I/O bound) test on Q8300 @ 2.50GHz Fedora 29 box:
sysbench /usr/local/share/sysbench/ oltp_point_select.lua
--mysql-host=127.0.0.1 --mysql-user=root --mysql-port=3306 --threads=12
--tables=4 --table-size=1000000 --time=60 --report-interval=5 run

● I’ve executed it without tracing and with the following (compatible?) data
collections working for same 60 seconds:
1. sudo pt-pmp --interval=1 --iterations=60 --pid=`pidof mysqld`

2. sudo perf record -F 99 -a -g -- sleep 60
[perf record: Woken up 17 times to write data]
[perf record: Captured and wrote 5.464 MB perf.data (23260 samples)]

3. sudo bpftrace -e 'profile:hz:99 { @[ustack] = count(); }' >
/tmp/bpftrace-stack.txt
[openxs@fc29 tmp]$ ls -l /tmp/bpftrace-stack.txt

-rw-rw-r--. 1 openxs openxs 2980460 Jan 29 12:24 /tmp/bpftrace-stack.txt

● Average QPS: 27272 | 15279 (56%) | 26780 (98.2%) | 27237 (99.87%)

23

Flame Graphs

● http://www.brendangregg.com/flamegraphs.html
● Flame graphs are a visualization (as .svg file to be checked in browser) of

profiled software, allowing the most frequent code-paths to be identified
quickly and accurately.

● The x-axis shows the stack profile population, sorted alphabetically (it is not
the passage of time), and the y-axis shows stack depth. Each rectangle
represents a stack frame. The wider a frame is, the more often it was present
in the stacks. Check some examples (on screen :)

● CPU Flame Graphs ← profiling by sampling at a fixed rate. Check this post.
● Memory Flame Graphs ← tracing malloc(), free(), brk(), mmap(),

page_fault
● Off-CPU Flame Graphs ← tracing file I/O, block I/O or scheduler
● More (Hot-Cold, Differential, pt-pmp-based etc),
● https://github.com/brendangregg/FlameGraph + perf + ... or bcc tools like

offcputime.py
24

http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-graphs/
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://www.brendangregg.com/blog/2015-02-26/linux-perf-off-cpu-flame-graph.html
https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp/
https://github.com/brendangregg/FlameGraph
https://github.com/iovisor/bcc/blob/master/tools/offcputime.py

Flame Graphs - simple example for off-CPU

● Created based on these steps (while oltp_update_index.lua was running):

[openxs@fc29 FlameGraph]$ sudo /usr/share/bcc/tools/offcputime -df 60 >
/tmp/out.stacks
WARNING: 459 stack traces lost and could not be displayed.
[openxs@fc29 FlameGraph]$./flamegraph.pl --color=io --title="Off-CPU
Time Flame Graph" --countname=us < /tmp/out.stacks > ~/Documents/out.svg

●
● I’ve searched for “futex” and related frames are highlighted

25

www.percona.com

Problems of dynamic tracing (with eBPF)
● root/sudo access is required
● Debugging the program that is traced …
● Limit memory and CPU usage while in kernel context
● How to add dynamic probe to some line inside the function?
● C++ (mangled names) and access to complex structures (needs headers)
● eBPF tools rely on recent Linux kernels (but Debian 9 uses 4.9+ and RHEL

8 and Ubuntu 18.04.02+ use 4.18 already). Use perf for older versions!
● -fno-omit-frame-pointer must be used everywhere to see reasonable stack

traces
● -debuginfo, symbolic information for binaries?
● More tools to install (and maybe build from source)
● Lack of knowledge and practical experience with anything but gdb and perf
● I had not (yet) used eBPF tools for real life Support issues at customer side

(gdb and perf are standard tools for many customers already).

26

www.percona.com

Am I crazy trying these and suggesting to DBAs?
● Quite possible, maybe I just have too much free time :)

● Or maybe I do not know how to use Performance Schema properly :)

● But I am not alone…

● For open source RDBMS like MariaDB there is no good reason NOT to try to
use dynamic probes (at least while UDST or Performance Schema
instrumentations are not on every other line of the code :)

● eBPF (with bcc tools and bpftrace) makes it easier (to some extent) and
safer to do this in production

27

www.percona.com

Thank you!

● Thanks to MariaDB Foundation and Anna Widenius for

this “MariaDB Day During FOSDEM” event!

● Questions and Answers?

● Please, report bugs at: https://jira.mariadb.org

28

https://jira.mariadb.org

