
Scalability 
Improvements in the 
InnoDB Storage 
Engine in MariaDB
Marko Mäkelä
Lead Developer InnoDB
MariaDB Corporation



Introduction

Scalability in Databases

● A database management system implements concurrent transactions

○ Transactions must be ACID (Atomic, Consistent, Isolated, and Durable).

● Users need concurrent access to the same tables, records, or data pages

○ Concurrency may be limited due to locking conflicts or contention.

○ Transactional locks will be held until COMMIT or ROLLBACK .

● READ UNCOMMITTED, READ COMMITTED, and REPEATABLE READ bypass 
transactional locks but not any (hopefully short-duration) internal latches

○ Mini-transactions (atomic modifications of multiple pages) hold page latches

○ Buffer pool (requesting, flushing, or evicting pages), redo log writes, …



A Layered Implementation of Transactions

Concepts

● Transport: Retransmission, 
flow control (TCP/IP)

● Network: IP, ICMP, UDP, BGP, 
DNS, … (router/switch)

● Data link: Packet framing, 
checksums

● Physical: Ethernet (CSMA/CD), 
WLAN (CSMA/CA), …

Low Layers in the OSI Model

● Transaction: ACID, MVCC

● Mini-transaction (+buffer pool): 
Atomic changes to multiple files, 
Durable (with recovery)

● File system (+cache): ext4, XFS, 
ZFS, NTFS, NFS, …

● Storage: HDD, SSD, PMEM, …

A Storage Engine in a DBMS

https://en.wikipedia.org/wiki/OSI_model


Constraints

Write Dependencies and ACID

● A log sequence number (LSN) totally orders the output of mini-transactions.

○ The mini-transaction’s atomic change to one or multiple pages is durable if all log up 
to the end LSN has been written.

● Undo log pages implement ACID transactions (implicit locks, rollback, MVCC)

○ A user transaction COMMIT is durable if its undo page change is durable.

● Write-ahead logging: Must write log before changed pages, at least up to the 
FIL_PAGE_LSN of the changed page that is about to be written

● Log checkpoint: write all changed pages older than the checkpoint LSN

● Recovery will have to process log from the checkpoint LSN to last durable LSN



Mini-Transactions and Recovery

Atomic Mini-Transactions: Latches and Log

Mini-Transaction

Memo:
Locks or 
Buffer-Fixes

dict_index_t::
lock covers internal 
(non-leaf) pages

fil_space_t::
latch: allocating or 
freeing pagesLog:

Page 
Changes

Data Files
FIL_PAGE_LSNFlush (after log)

ib_logfile0Log Buffer
log_sys.buf

Write ahead (of page flush) to log

commit

A mini-transaction commit stores 
the log position (LSN) to each 
changed page.
Recovery will apply log if its LSN 
is newer than the 
FIL_PAGE_LSN.

Log position 
(LSN)

Flush list

Buffer pool page
buf_page_t::
oldest_modification



Log Format Changes 
for More Write Speed 
and Faster Recovery

MariaDB Server 10.5



MariaDB Server 10.5

Improvements to the Redo Log

● Fewer writes and reads of data pages thanks to new log records

○ We now avoid writes of freed pages after DROP (or rebuild) operations.

○ The doublewrite buffer is not used for newly (re)initialized pages.

● An improved group commit reduces contention and improves scalability

● We can write log without system calls to persistent memory module

● The physical format is easy to parse, thanks to explicitly encoded lengths

○ Optimized memory management on recovery (or mariabackup --prepare ).



MariaDB Server 10.5

Fewer Writes and Reads of Data Pages

● Page (re)initialization will write an INIT_PAGE record

○ Recovery will avoid reading the page and reconstruct it based on log records.

○ Page flushing can safely skip the doublewrite buffer.

● Freeing a page will write a FREE_PAGE record to log, and 

○ Freed pages will not be written back, nor read by crash recovery!

○ If scrubbing is enabled, flushing will overwrite freed pages with zeroes.

○ Short-lived pages may avoid being written completely.



MariaDB Server 10.5

● Vladislav Vaintroub introduced a group_commit_lock for more efficient 
synchronization of redo log writing and flushing.

○ The goal was to reduce CPU consumption on log_write_up_to(), to reduce 
spurious wakeups, and improve the throughput in write-intensive benchmarks.

○ Benchmarks highlighted that performance is very sensitive to redo log volume. 
Logical UNDO_APPEND , INSERT, DELETE records are more compact than purely 
physical log covering changes to many header or pointer fields.

● Sergey Vojtovich and Eugene Kosov wrote an optional libpmem interface to 
improve performance on Intel® Optane™ DC Persistent Memory Module

○ Write to a memory-mapped file, and execute CLFLUSH to make it durable.

Faster InnoDB Redo Log Writes



● Recovery (and mariabackup) must parse and buffer all log records that were 
durably written since the last completed log checkpoint LSN

● The new log record format In MariaDB Server 10.5 makes this faster:

○ Explicitly encoded lengths simplify parsing.

○ Simpler memory management: A record can never exceed innodb_page_size.

● The recovery of logical INSERT, DELETE includes validation of page contents

○ Corrupted data can be detected more reliably.

MariaDB Server 10.5

Improved Backup and Recovery



Code Cleanup in 
MariaDB Server 10.5

MariaDB Server 10.5



MariaDB Server 10.5

Cleanup of Background Threads and Tasks

● InnoDB used to have a single “master thread”

● MySQL 5.5, 5.6, 5.7, MariaDB 10.1: more and more threads for simple tasks

○ Most threads would be idle for much of the time, consuming OS resources.

● MariaDB Server 10.5: Most background tasks are run in a thread pool

● MariaDB Server 10.5: Purge tasks sort work by table_id

○ Reduces look-up of non-existent tables and contention between purge tasks.

○ Acquire MDL, process several records for the same table, release MDL.

● Future work: Scale background activity based on foreground workload



MariaDB Server 10.5

● Back in the MySQL 5.1 times, throughput would collapse when exceeding 8 
concurrent connections, due to kernel_mutex, buf_pool->mutex, …

○ Workaround: innodb_thread_concurrency, innodb_commit_concurrency

● But, we test MariaDB with ‘insane’ number of connections without seeing a 
dramatic drop of total throughput

○ MariaDB Server 10.3 significantly reduced trx_sys.mutex contention

○ MariaDB Server 10.5 reduced some contention in buf_pool and dict_sys

○ MariaDB Server 10.5.5 removes the throttling code that has become useless, and 
deprecating and ignoring the parameters. MariaDB Server 10.6 will remove them.

Removal of InnoDB thread throttling



MariaDB Server 10.5

● InnoDB aims to avoid read-before-write when it needs to modify a secondary 
index B-tree leaf page that is not in the buffer pool.

○ Insert, delete-mark and purge (delete) operations can be written to a change buffer in 
the system tablespace, to be merged to the final location later.

● MariaDB Server 10.5 no longer merges buffered changes in the background

○ Change buffer merges can no longer cause hard-to-predict I/O spikes.

○ A corrupted index can only cause trouble when it is being accessed.

● This was joint work with Thirunarayanan Balathandayuthapani

● Future work: Simpler, logical format; use it also on ROLLBACK

More Predictable Change Buffer



MariaDB Server 10.5

InnoDB Data Dictionary Cleanup

● Thirunarayanan Balathandayuthapani extended the use of metadata locks 
(MDL)

○ Background operations must ensure that the table not be dropped.

○ This used to be covered by dict_operation_lock (or dict_sys.latch), which 
covers any InnoDB table!

○ It suffices to acquire MDL on the table name.

● In a future release, we hope to remove dict_sys.latch altogether, and to 
replace internal transactional table locks with MDL.



MariaDB Server 10.5

Some Changes to the InnoDB Buffer Pool

● The InnoDB buffer pool is a page cache (user tables, indexes, or undo logs)

● In 2006, MySQL 5.0.30 introduced buf_block_t::mutex to reduce some 
contention on buf_pool->mutex

● In 2010, MySQL 5.5.7 partitioned the buffer pool by hash on page identifier

● In 2020, MariaDB Server 10.5 reverted back to a single buffer pool

○ Some unnecessarily global data was removed (e.g., buf_page_t::flush_type).

○ Some remaining contention was addressed by making more use of C++11 
std::atomic in data structures, and buf_block_t::mutex was removed.

○ Simpler buf_pool.page_hash with cache-friendly latching improves concurrency.



The Way Ahead



MariaDB Corporation

Ideas for Faster Writes and Startup

● Asynchronous COMMIT: send OK packet on write completion

○ Execute next statement(s) without waiting for COMMIT. (Idea: Vladislav Vaintroub)

● Complete the InnoDB recovery in the background, while allowing connections

○ Basically, just remove a special ‘recovery mode’ from page flushing.

○ The rollback of recovered incomplete transactions was always performed in the 
background.

○ We could also allow read-only startup on a data directory when recovery is needed 
(so that you can look what is inside, without modifying anything).



MariaDB Corporation

Limitations in Current File Formats

● Secondary indexes are missing a per-record transaction ID

○ MVCC, purge, and checks for implicit locks could be much simpler and faster.

● DB_ROLL_PTR and the undo log format limit us to 128 rollback segments

○ Cannot possibly scale beyond 128 concurrently starting write transactions.

● Redo log: 512-byte block size causes copying and mutex contention

○ Block framing forces log records to be split or padded.

○ A mutex must be held while copying, padding, encrypting, computing checksums.



MariaDB Corporation

Flash-Friendly Log Format

● Write information about checkpoints and file operations into separate file

○ That file can be written to without affecting the LSN.

○ Instead of writing .delta files, mariabackup could append to this file!

○ No need for mariabackup --prepare before server startup!

● For the circular file, allow arbitrary block size (e.g., 1 to 16,384 bytes)

○ Write special ‘ignore next N bytes’ records when writing an incomplete block, 
observing the block size of the underlying storage. Avoids initializing pad bytes!

○ Encrypt records and compute checksums before acquiring mutex for copying!

○ mtr_t::commit() could copy directly to a memory-mapped file?



MariaDB Corporation

Conclusion

● MariaDB Server 10.5 makes better use of the available hardware resources

○ Useless or harmful parameters were removed, others made dynamic.

○ Performance and scalability were improved for various types of workloads.

● Performance must never come at the cost of reliability or compatibility

○ Our stress tests are based on some formal methods and state-of-the-art tools.

○ We also test in-place upgrades of existing data files.

● Watch out for more improvements in future releases



Thoughts on Testing

MariaDB Corporation



MariaDB Corporation

Concurrency is Hard

● Global locks around entire subsystems will easily guarantee correctness

○ It is easy to read and write sequential (single-threaded) algorithms.

○ But, a coarse lock or mutex will destroy any concurrency!

○ Multi-core CPUs demand fine-grained locking and multi-threaded execution.

● We need a machine-readable specification to catch errors

○ Assertions in debug builds

○ AddressSanitizer (ASAN) and MemorySanitizer (MSAN) with custom instrumentation

● Regression test (mtr) on CI systems; manual testing with random input



MariaDB Corporation

Repeatable Execution Traces of Failures

● https://rr-project.org by the Mozilla Foundation records an execution trace that 
can be used for deterministic debugging with rr replay

○ Breakpoints and watchpoints will work and can catch data races!

○ Much smaller than core dumps, even though all intermediate states are included.

● Even the most nondeterministic bugs become tractable and fixable

○ Recovery bugs: need a trace of the killed server and the recovering server.

○ We recently found and fixed several elusive 10-year-old bugs.

● Best of all, this can be combined with ASAN and Random Query Generator

https://rr-project.org


MariaDB Corporation

Performance Testing

● Performance regressions can be hard to catch due to huge variation of types of 
workload and hardware

○ Read-only vs. read-mostly vs. write-heavy

○ Small buffer pool vs. large buffer pool (in-memory workload)

○ Different storage characteristics: HDD, SSD, NAS, PMEM

● MariaDB Server 10.5 generally improves performance

○ We have identified some bottlenecks.

○ This is work in progress.


