
MariaDB Temporal Tables

Federico Razzoli

$ whoami

Hi, I’m Federico Razzoli from Vettabase Ltd

Database consultant, open source supporter,
long time MariaDB and MySQL user

● vettabase.com
● Federico-Razzoli.com

Temporal Tables Implementations

Proprietary DBMSs

● Oracle 11g (2007)
● Db2 (2012)
● SQL Server 2016
● Snowflake

In Db2, a temporal table can use system-period or application-period

Open source databases

● PostgreSQL has a temporal_tables extension
○ not available from the main cloud vendors

● CockroachDB
○ with limitations

● CruxDB (NoSQL)
● HBase stores old row versions and you can retrieve them

MariaDB

MariaDB supports both types of Temporal Tables:

● MariaDB 10.3: system_time
● MariaDB 10.4: application_time

Tables are bitemporal

Application Time

Example

CREATE OR REPLACE TABLE ticket (
id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
state ENUM('OPEN', 'VERIFIED', 'FIXED', 'INVALID') NOT NULL

 DEFAULT 'OPEN',
summary VARCHAR(200) NOT NULL,
description TEXT NOT NULL

)
ENGINE InnoDB

;

● We want to start to track changes to bugs over time

Making the table Application-Timed

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD COLUMN valid_from DATETIME NOT NULL,
ADD COLUMN valid_to DATETIME NOT NULL,
ADD PERIOD FOR time_period (valid_from, valid_to) ;

We can use...

● Any temporal data type that includes a date (DATE, DATETIME, TIMESTAMP)
● Any storage engine

Inserting rows

MariaDB [test]> INSERT INTO ticket (summary, description) VALUES
-> ('I cannot login', 'Why is this happening to me?');

ERROR 1364 (HY000): Field 'valid_from' doesn't have a default value

MariaDB [test]> INSERT INTO ticket (summary, description, valid_from, valid_to)
VALUES

-> ('I cannot login', 'Why is this happening to me?',
-> '1994-01-01', '2010-01-01');

Query OK, 1 row affected (0.003 sec)

A better Application-Timed table

CREATE TABLE ticket_tmp LIKE ticket;
ALTER TABLE ticket_tmp

ADD COLUMN valid_from DATETIME NOT NULL
 DEFAULT NOW(),

ADD COLUMN valid_to DATETIME NOT NULL
 DEFAULT '2038-01-19 03:14:07.999999' ,

ADD INDEX idx_valid_from (valid_from),
ADD INDEX idx_valid_to (valid_to),

 ADD PERIOD FOR time_period(valid_from, valid_to);

A better Application-Timed table

ALTER TABLE ticket_tmp
 DROP PRIMARY KEY,
 ADD PRIMARY KEY (id, valid_to)
;

-- populate the table

RENAME TABLE ticket TO ticket_old, ticket_tmp TO ticket;

● You will need to do similar operations with UNIQUE indexes
● RENAME TABLE is an atomic operation

Reading rows

MariaDB [test]> SELECT id, summary, valid_from, valid_to FROM ticket;
+----+----------------+---------------------+---------------------+
| id | summary | valid_from | valid_to |
+----+----------------+---------------------+---------------------+
| 1 | I cannot login | 1994-01-01 00:00:00 | 2010-01-01 00:00:00 |
+----+----------------+---------------------+---------------------+
1 row in set (0.001 sec)

MariaDB [test]> SELECT id, summary, valid_from, valid_to FROM ticket
-> WHERE NOW() BETWEEN valid_from AND valid_to;

Empty set (0.001 sec)

Deleting rows properly

CREATE OR REPLACE PROCEDURE ticket_delete(p_id INT)
MODIFIES SQL DATA
COMMENT 'Makes a row obsolete by changing its timestamp'

BEGIN
UPDATE ticket

 SET valid_to = NOW()
 WHERE id = p_id AND valid_to > NOW();
END;

Deleting rows properly
MariaDB [test]> SELECT id, valid_from, valid_to FROM ticket WHERE id = 1;
+----+---------------------+---------------------+
| id | valid_from | valid_to |
+----+---------------------+---------------------+
| 1 | 2020-08-23 14:32:22 | 2038-01-19 03:14:07 |
+----+---------------------+---------------------+

MariaDB [test]> CALL ticket_delete(1);

MariaDB [test]> SELECT id, valid_from, valid_to FROM ticket WHERE id = 1;
+----+---------------------+---------------------+
| id | valid_from | valid_to |
+----+---------------------+---------------------+
| 1 | 2020-08-23 14:32:22 | 2020-08-23 14:32:34 |
+----+---------------------+---------------------+

Deleting/updating periods
MariaDB [test]> SELECT id, valid_from, valid_to FROM ticket;
+----+---------------------+---------------------+
| id | valid_from | valid_to |
+----+---------------------+---------------------+
| 1 | 1994-01-01 00:00:00 | 2010-01-01 00:00:00 |
+----+---------------------+---------------------+

MariaDB [test]> DELETE FROM ticket
-> FOR PORTION OF time_period FROM '1990-01-01' TO '2000-01-01'
-> WHERE id = 1;

MariaDB [test]> SELECT id, valid_from, valid_to FROM ticket;
+----+---------------------+---------------------+
| id | valid_from | valid_to |
+----+---------------------+---------------------+
| 2 | 2000-01-01 00:00:00 | 2010-01-01 00:00:00 |
+----+---------------------+---------------------+

System Versioning

Back to our example...

CREATE OR REPLACE TABLE ticket (
id INT PRIMARY KEY NOT NULL AUTO_INCREMENT,
state ENUM('OPEN', 'VERIFIED', 'FIXED', 'INVALID') NOT NULL

 DEFAULT 'OPEN',
summary VARCHAR(200) NOT NULL,
description TEXT NOT NULL

)
ENGINE InnoDB

;

Making the table System-Versioned

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD SYSTEM VERSIONING;

Making the table System-Versioned

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD COLUMN inserted_at TIMESTAMP(6) GENERATED ALWAYS AS ROW START INVISIBLE,
ADD COLUMN deleted_at TIMESTAMP(6) GENERATED ALWAYS AS ROW END INVISIBLE,
ADD PERIOD FOR SYSTEM_TIME(inserted_at, deleted_at),
ADD SYSTEM VERSIONING;

Limitations:

● Temporal columns don’t have to be INVISIBLE, if they’re often needed
● MDEV-15968: System versioning and CONNECT engine don't work well

together: current data is not returned
● MDEV-17448: Support DATETIME(6) for ROW START, ROW END

Querying a Sysver Table

-- get current version of the rows
-- without the temporal columns (they’re INVISIBLE)
SELECT * FROM ticket;

-- get current version of the rows
-- with the temporal columns
SELECT *, inserted_at, deleted_at FROM ticket;

-- all current and old data
SELECT *, inserted_at, deleted_at

FROM ticket FOR SYSTEM_TIME ALL;

Get old versions of the rows

-- get deleted rows
SELECT *, inserted_at, deleted_at

FROM ticket FOR SYSTEM_TIME
 FROM '1970-00-00' TO NOW() - 1 MICROSECOND;

SELECT *, inserted_at, deleted_at
FROM ticket FOR SYSTEM_TIME

 BETWEEN '1970-00-00' AND NOW() - 1 MICROSECOND;

SELECT *, inserted_at, deleted_at
FROM ticket FOR SYSTEM_TIME ALL
WHERE deleted_at < NOW();

History of a row

SELECT id, state, inserted_at, deleted_at
FROM ticket FOR SYSTEM_TIME ALL
WHERE id = 3
ORDER BY deleted_at;

Read a row from a specific point in time

SELECT id, state
FROM ticket FOR SYSTEM_TIME AS OF TIMESTAMP'2020-08-22 08:52:36'
WHERE id = 3;

SELECT id, state
FROM ticket FOR SYSTEM_TIME ALL
WHERE id = 3 AND
'2020-08-22 08:52:36' BETWEEN inserted_at AND deleted_at;

Temporal JOINs

-- rows that were present on 07/01
-- whose state did not change after one month

SELECT t1.id, t1.inserted_at, t1.deleted_at
 FROM ticket FOR SYSTEM_TIME ALL AS t1
 LEFT JOIN ticket FOR SYSTEM_TIME ALL AS t2
 ON
 t1.id = t2.id
 AND t1.state = t2.state
 WHERE
 '2020-07-01 00:00:00' BETWEEN t1.inserted_at AND t1.deleted_at
 AND '2020-08-01 00:00:00' BETWEEN t2.inserted_at AND t2.deleted_at
 AND t2.id IS NULL
 ORDER BY t1.id;

Indexes

The ROW END column is automatically appended to:

● The Primary Key;
● All UNIQUE indexes.

Queries can use a whole index of its leftmost part,
so once a regular table becomes System Versioned queries performance will not
degrade.

For Application Timed tables, indexes remain unchanged.

The power of [bi]Temporal Tables

Hints about things you can do

● A table can be both system-versioned and application-timed (bitemporal)
● Stats on added/deleted rows by year, month, weekday, day, daytime…
● Stats on rows lifetime
● Get rows that never changed
● Get rows that change too often, or change at “strange” times
● Examine history of a row to find problems
● ...

Hints about things that you should do

● PK should never change, or tracking rows history will be impossible
○ If necessary, use a trigger that throws an error if OLD.id != NEW.id

● Application Time tables: no hard deletions/updates
● If you have to drop a column, move it to a new table to avoid losing the history
● If you have to add a column that is not often read/written, consider putting it

into a new table
● If you run stats or complex queries involving temporal columns, add

PERSISTENT columns and indexes on them to make queries faster

What we left out

This was a short introductory session, so we left out some features:

● ALTER TABLEs
○ They may erase or change parts of the history, so they’re disabled by default

● Partitioning
○ You can record the history in a separate partition, or multiple partitions

● Backups
○ Check the docs for problems with Sysver Tables and mysqldump

● Replication / binlog
○ Check the documentation for possible problems with Sysver Tables
○ MariaDB can be a replica of a MySQL server, and make use of Temporal Tables to

let analysts run certain analyses that they couldn’t run on MySQL

 Thanks for attending!
 Question time :-)

