MariaDB Temporal Tables

Federico Razzoli

TN

Vetta
Baseltd.

$ whoami
Baseltd.

Hi, I'm Federico Razzoli from Vettabase Ltd

Database consultant, open source supporter,
long time MariaDB and MySQL user

e Vvettabase.com
e [ederico-Razzoli.com

Mastering MariaDB

Temporal Tables Implementations

TN

Vetta
Bu seltd.

TN

Proprietary DBMSs Vetta
Base"d’

e Oracle 11g (2007)

e Db2(2012)

e SQL Server 2016

e Snowflake

In Db2, a temporal table can use system-period or application-period

Open source databases

e PostgreSQL has a temporal_tables extension
o not available from the main cloud vendors

e CockroachDB
o with limitations

e CruxDB (NoSQL)

e HBase stores old row versions and you can retrieve them

TN

MariaDB Vetta
Base Itd.

MariaDB supports both types of Temporal Tables:

e MariaDB 10.3: system_time
e MariaDB 10.4: application_time

Tables are bitemporal

Application Time

Vetta
Ba se 't

i

Example Vetta
Base"

CREATE OR REPLACE TABLE ticket (
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
state ENUM('OPEN', 'VERIFIED', 'FIXED', 'INVALID') NOT NULL
DEFAULT 'OPEN',
summary VARCHAR (200) NOT NULL,
description TEXT NOT NULL

ENGINE InnoDB

e We want to start to track changes to bugs over time

Making the table Application-Timed

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD COLUMN Valid_from DATETIME NOT NULL,
ADD COLUMN valid_to DATETIME NOT NULL,
ADD PERIOD FOR time period (valid from, valid to) ;

We can use...

e Any temporal data type that includes a date (DATE, DATETIME, TIMESTAMP)
e Any storage engine

i

Inserting rows Vetta
Baseltd.

MariaDB [test]> INSERT INTO ticket (summary, description) VALUES
-> ('I cannot login', 'Why is this happening to me?');
ERROR 1364 (HY000): Field 'valid from' doesn't have a default value

MariaDB [test]> INSERT INTO ticket (summary, description,valid from, valid to)
VALUES

-> ('I cannot login', 'Why is this happening to me?',

-> '1994-01-01"', '2010-01-01");
Query OK, 1 row affected (0.003 sec)

i

A better Application-Timed table Vetta

Base"
CREATE TABLE ticket tmp LIKE ticket;

ALTER TABLE ticket tmp
ADD COLUMN valid from DATETIME NOT NULL
DEFAULT NOW () ,
ADD COLUMN valid_to DATETIME NOT NULL
DEFAULT '2038-01-19 03:14:07.999999"
ADD INDEX idx valid from (valid from),
ADD INDEX idx valid to (valid to),

14

ADD PERIOD FOR time period(valid from, valid to);

A better Application-Timed table

ALTER TABLE ticket tmp
DROP PRIMARY KEY,
ADD PRIMARY KEY (id, wvalid to)

-— populate the table

RENAME TABLE ticket TO ticket old, ticket tmp TO ticket;

e You will need to do similar operations with UNIQUE indexes
e RENAME TABLE is an atomic operation

Reading rows

MariaDB [test]> SELECT id, summary, valid from, valid to FROM ticket;

Fom e Fmm e Fom e +
| id | summary | valid from | valid to |

Fom e Fmm e Fom e +
| 1 | I cannot login | 1994-01-01 00:00:00 | 2010-01-01 00:00:00 |
Fom e Fmm e Fom e +

1 row in set (0.001 sec)

MariaDB [test]> SELECT id, summary, valid from, valid to FROM ticket
-> WHERE NOW () BETWEEN Valid_from AND valid_to;
Empty set (0.001 sec)

i

Vetta
Ba se'td

TN

Deleting rows properly \éetta
useltd.

CREATE OR REPLACE PROCEDURE ticket delete(p id INT)
MODIFIES SQL DATA
COMMENT 'Makes a row obsolete by changing its timestamp'
BEGIN
UPDATE ticket
SET valid to = NOW ()
WHERE id = p id AND valid to > NOW();

END;

i

Deleting rows properly Vetta

Base"
MariaDB [test]> SELECT id, valid from, valid to FROM ticket WHERE id = 1;
it o +
| id | valid from | valid to |
e it o +
| 1 | 2020-08-23 14:32:22 | 2038-01-19 03:14:07 |
it o +

MariaDB [test]> CALL ticket delete(l);

MariaDB [test]> SELECT id, valid from, valid to FROM ticket WHERE id = 1;

e e o +
| id | valid from | valid to |

et ettt Fm +
| 1 | 2020-08-23 14:32:22 | 2020-08-23 14:32:34 |
e e o +

Deleting/updating periods

MariaDB [test]> SELECT id, valid from, valid to FROM ticket;

Fm o Fmm - +
| id | valid from | valid to |

fom fom +
| 1 | 1994-01-01 00:00:00 | 2010-01-01 00:00:00 |
Fm o Fmm - +

MariaDB [test]> DELETE FROM ticket

-> FOR PORTION OF time period FROM '1990-01-01' TO '2000-01-01"

-> WHERE id = 1;

MariaDB [test]> SELECT id, valid from, valid to FROM ticket;

e o +
| id | valid from | valid to |

fom fom +
| 2 | 2000-01-01 00:00:00 | 2010-01-01 00:00:00 |
e o +

i

Vetta
[’(’!;E!“d°

System Versioning

Vetta
Ba se 't

i

Back to our example... Vetta
Baseltd.

CREATE OR REPLACE TABLE ticket (
id INT PRIMARY KEY NOT NULL AUTO INCREMENT,
state ENUM('OPEN', 'VERIFIED', 'FIXED', 'INVALID') NOT NULL
DEFAULT 'OPEN',
summary VARCHAR (200) NOT NULL,
description TEXT NOT NULL

ENGINE InnoDB

TN

Making the table System-Versioned Vetta
Buseltd.

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD SYSTEM VERSIONING;

Making the table System-Versioned

ALTER TABLE ticket
LOCK = SHARED,
ALGORITHM = COPY,
ADD COLUMN inserted at TIMESTAMP (6) GENERATED ALWAYS AS ROW START INVISIBLE,
ADD COLUMN deleted at TIMESTAMP (6) GENERATED ALWAYS AS ROW END INVISIBLE,
ADD PERIOD FOR SYSTEM TIME (inserted at, deleted at)
ADD SYSTEM VERSIONING

Limitations:

e Temporal columns don’t have to be INVISIBLE, if they’re often needed

e MDEV-15968: System versioning and CONNECT engine don't work well
together: current data is not returned

e MDEV-17448: Support DATETIME(6) for ROW START, ROW END

Querying a Sysver Table

-- get current version of the rows
-— without the temporal columns (they’re INVISIBLE)
SELECT * FROM ticket;

-— get current version of the rows
-- with the temporal columns
SELECT *, inserted at, deleted at FROM ticket;

-—- all current and old data
SELECT *, inserted at, deleted at
FROM ticket FOR SYSTEM TIME ALL;

i

Vetta
Base"

Get old versions of the rows

-— get deleted rows
SELECT *, inserted at, deleted at
FROM ticket FOR SYSTEM TIME
FROM '1970-00-00' TO NOW() - 1 MICROSECOND

SELECT *, inserted at, deleted at
FROM ticket FOR SYSTEM TIME
BETWEEN '1970-00-00"'" AND NOW() - 1 MICROSECOND

SELECT *, inserted at, deleted at
FROM ticket FOR SYSTEM TIME ALL
WHERE deleted at < NOW();

i

Vetta
Bu se'td

T\

History of a row Vetta
Baseltd.

SELECT 1id, state, inserted at, deleted at
FROM ticket FOR SYSTEM TIME ALL
WHERE id = 3
ORDER BY deleted at;

TN

Read a row from a specific point in time \éetta
useltd.

SELECT id, state
FROM ticket FOR SYSTEM_TIME AS OF TIMESTAMP'2020-08-22 08:52:306"
WHERE id = 3;

SELECT id, state
FROM ticket FOR SYSTEM TIME ALL
WHERE id = 3 AND
'2020-08-22 08:52:36"' BETWEEN inserted at AND deleted at

i

Temporal JOINs Vetta
Baseltd.

-- rows that were present on 07/01
-- whose state did not change after one month

SELECT tl.id, tl.inserted at, tl.deleted at

FROM ticket FOR SYSTEM TIME ALL AS tl
LEFT JOIN ticket FOR SYSTEM TIME ALL AS t2
ON

tl.id = t2.id
AND tl.state = t2.state
WHERE
'2020-07-01 00:00:00' BETWEEN tl.inserted at AND tl.deleted at
AND '2020-08-01 00:00:00' BETWEEN t2.inserted at AND t2.deleted at
AND t2.id IS NULL
ORDER BY tl.id;

Indexes

The ROW END column is automatically appended to:

e The Primary Key;
e All UNIQUE indexes.

Queries can use a whole index of its leftmost part,
SO once a regular table becomes System Versioned queries performance will not

degrade.

For Application Timed tables, indexes remain unchanged.

The power of [bi|Temporal Tables

Vetta
Ba seltd.

Hints about things you can do

A table can be both system-versioned and application-timed (bitemporal)
Stats on added/deleted rows by year, month, weekday, day, daytime...
Stats on rows lifetime

Get rows that never changed

Get rows that change too often, or change at “strange” times

Examine history of a row to find problems

Hints about things that you should do

e PK should never change, or tracking rows history will be impossible
o If necessary, use a trigger that throws an error if OLD.id = NEW.id
e Application Time tables: no hard deletions/updates
e If you have to drop a column, move it to a new table to avoid losing the history
e |[f you have to add a column that is not often read/written, consider putting it
into a new table
e If you run stats or complex queries involving temporal columns, add
PERSISTENT columns and indexes on them to make queries faster

What we left out

This was a short introductory session, so we left out some features:

e ALTER TABLEs
o They may erase or change parts of the history, so they’re disabled by default
e Partitioning
o You can record the history in a separate partition, or multiple partitions
e Backups
o Check the docs for problems with Sysver Tables and mysqgldump
e Replication/ binlog
o Check the documentation for possible problems with Sysver Tables
o MariaDB can be a replica of a MySQL server, and make use of Temporal Tables to
let analysts run certain analyses that they couldn’t run on MySQL

Thanks for attending!
Question time :-)

THANK YOU :) pé

- Vetta
\ &= Base"

