
Dynamic Tracing of MariaDB
Server on Linux
Problems and Solutions

Valerii Kravchuk, Principal Support Engineer, MariaDB
valerii.kravchuk@mariadb.com

1

www.percona.com

Who am I and What Do I Do?
Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005-2012
● Principal Support Engineer in Percona, 2012-2016
● Principal Support Engineer in MariaDB Corporation since March 2016
● http://mysqlentomologist.blogspot.com - my blog about MariaDB and

MySQL (including some HowTos, not only bugs marketing)
● https://www.facebook.com/valerii.kravchuk - my Facebook page
● http://bugs.mysql.com - my personal playground
● @mysqlbugs #bugoftheday
● MySQL Community Contributor of the Year 2019
● I speak about MySQL and MariaDB in public. Some slides from previous talks

are here and there…
● “I solve problems”, “I drink and I know things”

2

http://mysqlentomologist.blogspot.com
http://mysqlentomologist.blogspot.com/search/label/howto
https://www.facebook.com/valerii.kravchuk
http://bugs.mysql.com
https://twitter.com/mysqlbugs
https://www.percona.com/blog/2019/05/29/mysql-community-awards-at-percona-live-2019/
https://www.slideshare.net/valeriikravchuk1
https://www.slideshare.net/ValeriyKravchuk
http://mysqlentomologist.blogspot.com/2016/01/im-winston-wolf-i-solve-problems.html
https://youtu.be/GYh7smM6YpM

www.percona.com

Disclaimers
● Since September, 2012 I act as an Independent Consultant

providing services to different companies
● All views, ideas, conclusions, statements and approaches

in my presentations and blog posts are mine and may not
be shared by any of my previous, current and future
employees, customers and partners

● All examples are either based on public information or are
truly fictional and has nothing to do with any real persons or
companies. Any similarities are pure coincidence :)

● The information presented is true to the best of my
knowledge

3

www.percona.com

Sources of tracing and profiling info for MariaDB

● Trace files from -debug binaries
● Extended slow query log
● show [global] status;
● show engine innodb status\G
● show engine innodb mutex;
● InnoDB-related tables in the INFORMATION_SCHEMA
● userstat - per user, client, table or index
● show profiles;
● PERFORMANCE_SCHEMA (MariaDB 10.5 added

memory instrumentation and some more)
● Profilers (even simple like pt-pmp or real like perf)
● OS-level tracing and profiling tools
● tcpdump analysis

4

https://www.percona.com/doc/percona-server/LATEST/diagnostics/slow_extended.html
https://mariadb.com/kb/en/library/information-schema-innodb-tables/
https://mariadb.com/kb/en/user-statistics/
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables
https://mariadb.com/kb/en/changes-improvements-in-mariadb-105/#performance-schema-updates-to-match-mysql-57-instrumentation-and-tables
https://vividcortex.com/blog/2014/02/25/performance-schema-slowquery-log-tcp-sniffing/

www.percona.com

What is this session about?

● It’s about tracing and profiling MariaDB server (or any other
processes, or even kernel), and some tools for dynamic
tracing and profiling in production on recent Linux
versions:
○ Few words about ftrace that is “always there”
○ Some details about perf and adding dynamic probes
○ Mostly about eBPF, bcc tools and bpftrace

● I plan to present and discuss some (mostly resolvable)
dynamic tracing problems one may hit with MariaDB server

● Why not about Performance Schema?
● Performance impact of tracing and profiling

5

https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wikipedia.org/wiki/Ftrace
http://www.brendangregg.com/perf.html
https://www.slideshare.net/valeriikravchuk1/tracing-and-profiling-my-sql-percona-live-europe-2019-draft1
https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
https://mariadb.com/kb/en/performance-schema-overview/
https://www.slideshare.net/ValeriyKravchuk/applying-profilers-to-my-sql-fosdem-2017

www.percona.com

Why not about Performance Schema?

● Discussed elsewhere a lot
● It may be NOT enabled when server was started (the case for

MariaDB by default) or built (performance impact?)
● Too much memory used (see MDEV-20216)
● Specific instruments may not be enabled at startup and then it’s

too late (see Bug #68097) - not dynamic enough!
● Sizing instruments properly may be problematic
● Part of the code or 3rd party plugins may not be instrumented at

all or in enough details (see Bug #83912)
● It does not give you a system-wide profiling, just for selected

parts of MariaDB (and more of MySQL) server
● MariaDB Developers do not consider it that useful and prefer to

get stack traces… (see pt-pmp)
● Not easy to use (large and complex queries), sys helps...

6

https://jira.mariadb.org/browse/MDEV-20216
https://bugs.mysql.com/bug.php?id=68097
http://bugs.mysql.com/bug.php?id=83912
https://github.com/Percona-Lab/pt-pmp
https://jira.mariadb.org/browse/MDEV-9077

www.percona.com

So, what do I suggest?
● Use modern Linux tracing tools!
● Yes, all that kernel and user probes and tracepoints, ftrace, and perf, and

eBPF (via bcc tools and bpftrace), depending on Linux kernel version
● Julia Evans explains and illustrates them all here
● Brendan D. Gregg explains them all with a lot of details and examples:

7

http://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html
https://lwn.net/Articles/740157/
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
http://www.brendangregg.com/

www.percona.com

Tracing events sources
● So, tracing is basically doing something whenever specific events occur
● Event data can come from the kernel or from userspace (apps and libraries).

Some of them are automatically available without further upstream
developer effort, others require manual annotations:

● Kprobe - the mechanism that allows tracing any function call inside the
kernel

● Kernel tracepoint - tracing custom events that the kernel developers have
defined (with TRACE_EVENT macros).

● Uprobe - for tracing user space function calls
● USDT (e.g. DTrace probes) stands for Userland Statically Defined Tracing

8

Automatic Manual annotations

Kernel kprobes Kernel tracepoints

Userspace uprobes USDT

www.percona.com

On frontends to events sources
● Frontends are tools that allow users to easily make use of the event sources
● Frontends basically operate like this:

a. The kernel exposes a mechanism – typically some /proc or /sys file that
you can write to – to register an intent to trace an event and what should
happen when an event occurs

b. Once registered, the kernel looks up the location in memory of the
kernel/userspace function/tracepoint/USDT-probe, and modifies its code
so that something else happens. Yes, the code is modified on the fly!

c. The result of that "something else" can be collected later through some
mechanism (like reading from files).

● Usually you don't want to do all these by hand (with echo, cat and text
processing tools via ftrace)! Frontends do all that for you

● perf is a frontend
● bcc and related tools are frontends
● bpftrace is a frontend

9

https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#frontends
http://www.brendangregg.com/blog/2019-10-15/kernelrecipes-kernel-ftrace-internals.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/tree/master/tools

www.percona.com

Few words about ftrace: do not bother much...
● ftrace - “a kind of janky interface which is a pain to use directly”. Basically

there’s a filesystem at /sys/kernel/debug/tracing/ that lets you get various
tracing data out of the kernel. It supports kprobes, uprobes, kernel
tracepoints and UDST can be hacked.

● The way you fundamentally interact with ftrace is:
○ Write to files in /sys/kernel/debug/tracing/
○ Read output from files in /sys/kernel/debug/tracing/

[openxs@fc29 ~]$ sudo mount -t tracefs nodev /sys/kernel/tracing
[openxs@fc29 ~]$ sudo ls /sys/kernel/tracing/
available_events kprobe_profile stack_trace
available_filter_functions max_graph_depth stack_trace_filter
…
[openxs@fc29 ~]$ sudo cat /sys/kernel/tracing/uprobe_events
p:probe_mysqld/dc /home/openxs/dbs/maria10.3/bin/mysqld:0x00000000005c7c93

● Usually is used via some tool (like trace-cmd), not directly

10

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ftrace
http://www.brendangregg.com/blog/2015-07-03/hacking-linux-usdt-ftrace.html
https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/
https://lwn.net/Articles/410200/

www.percona.com

Few words about ftrace: if you want to… go for it!
● ftrace - let’s try to add uprobe for dispatch_command() that prints SQL
● Tricky steps are to get probe address (it may be more complex):

openxs@ao756:~$ objdump -T /home/openxs/dbs/maria10.5/bin/mariadbd |
grep dispatch_command
000000000070a170 g DF .text 000000000000289b Base
_Z16dispatch_command19enum_server_commandP3THDPcjbb

● ...and to work with function arguments (do you know how they are passed?)
root@ao756:~# echo 'p:dc /home/openxs/dbs/maria10.5/bin/mariadbd:0x000000000070a170
query=+0(%dx):string' > /sys/kernel/debug/tracing/uprobe_events
root@ao756:~# echo 1 > /sys/kernel/debug/tracing/events/uprobes/dc/enable
root@ao756:~# echo 1 > /sys/kernel/debug/tracing/tracing_on
root@ao756:~# cat /sys/kernel/debug/tracing/trace_pipe
 mariadbd-22196 [000] d... 260006.251430: dc: (0x5592713fa170) query="select
1+3"
 mariadbd-22196 [001] d... 260008.899395: dc: (0x5592713fa170) query="select
version(), connection_id()"

● You can try to do this even with 2.6.27+ kernels, CentOS 6, (but better 4.x+)
● More details in my blog post
● Or just check/use uprobe from Brendan Gregg’s ftrace-based perf-tools

11

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/trace/uprobetracer.rst
http://mysqlentomologist.blogspot.com/2020/01/dynamic-tracing-of-mariadb-server-with_25.html
https://github.com/brendangregg/perf-tools/blob/master/examples/uprobe_example.txt
https://github.com/brendangregg/perf-tools

www.percona.com

Dynamic tracing with ftrace: problems and demo
● You need sudo or even root access
● How to to get the probe address? Consider complex cases of C++ class

methods, like in this post with perf
● How to work with function arguments? What if they are complex classes or

structures like THD?
● Return probes: this is easy: r instead of p and you can access $retval
● Don’t forget to remove the probe when done:

root@ao756:~# echo '-:dc' > /sys/kernel/debug/tracing/uprobe_events

● In some cases it may help to add probe with perf and then check the details
in /sys/kernel/tracing/uprobe_events

● Let’s try and see that machine code of traced function is really changed
● A lot of extra reading here..
● I plan to write more blog posts on ftrace when I find out something...

12

http://mysqlentomologist.blogspot.com/2020/07/dynamic-tracing-of-c-class-member.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html

www.percona.com

A lot about perf
● If you are interested in details presented nicely...
● Or even more details…
● But basically with Linux 2.6.31+ (since 2009) install perf package and try it:

perf
 usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]
 The most commonly used perf commands are:
...
 record Run a command and record its profile into perf.data
 report Read perf.data (created by perf record) and display the
profile
 sched Tool to trace/measure scheduler properties (latencies)
 script Read perf.data (created by perf record) and display
trace output
 stat Run a command and gather performance counter statistics
...
 top System profiling tool.
 probe Define new dynamic tracepoints
 trace strace inspired tool

 See 'perf help COMMAND' for more information on a specific command.

13

https://jvns.ca/perf-zine.pdf
http://www.brendangregg.com/perf.html

www.percona.com

Adding uprobe to MariaDB 10.5 with perf
● The idea is still to add dynamic probe to capture SQL queries
● This was done on Ubuntu 16.04 with recent MariaDB 10.5.6
● First I had to find out with gdb where is the query (demo)
● Then it’s just as easy as follows (demo continued):

openxs@ao756:~$ sudo perf probe -x
/home/openxs/dbs/maria10.5/bin/mariadbd 'dispatch_command packet:string'

openxs@ao756:~$ sudo perf record -e probe_mariadbd:dispatch_command -aR
^C[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.948 MB perf.data (2 samples)]

openxs@ao756:~$ sudo perf script >/tmp/queries.txt

openxs@ao756:~$ sudo cat /sys/kernel/tracing/uprobe_events
p:probe_mariadbd/dispatch_command
/home/openxs/dbs/maria10.5/bin/mariadbd:0x000000000070a170
packet_string=+0(%dx):string

openxs@ao756:~$ sudo perf probe --del dispatch_command

14

www.percona.com

Adding uprobe to MariaDB 10.5 with perf
● We have queries captured with probe added on previous slide:

openxs@ao756:~$ cat /tmp/queries.txt

 mariadbd 11063 [001] 2492.149290: probe_mariadbd:dispatch_command:
(556a2921d170) packet_string="select 1"

 mariadbd 11063 [000] 2496.934324: probe_mariadbd:dispatch_command:
(556a2921d170) packet_string="select version()"

● We can control output format, but basically we see binary, PID, CPU where
uprobe was executed on, timestamp (milliseconds since start of record),
probe and variables with format we specified

● perf is easier to use than ftrace directly, but we can use it to see the way to
add probes with ftrace too.

● We do not need to find addresses, understand the way parameters are
passed, and usually can access structure fields etc, but studying the source
code of the specific version and gdb checks are still essential

15

http://manpages.ubuntu.com/manpages/bionic/man1/perf-script.1.html

www.percona.com

Adding uprobe to MariaDB with perf: problems
● The idea of the time was still to add dynamic probe to capture SQL queries
● This was done on Fedora 29 with recent MariaDB 10.3.x and something

went wrong (event though it worked with trace bcc tool). I was NOT able to
add uprobe to print com_data->com_query.query in a probe on
dispatch_command

● So I tried with another function, do_command(), and its local variable,
packet::

[openxs@fc29 ~]$ sudo perf probe -x
/home/openxs/dbs/maria10.3/bin/mysqld 'do_command packet'

Sorry, we don't support this variable location yet.

 Error: Failed to add events.

● I could print THD *thd parameter, but got no luck with structure members...

16

● --vars option shows what we can access:

[openxs@fc29 ~]$ sudo perf probe -x
/home/openxs/dbs/maria10.3/bin/mysqld --vars do_command

Available variables at do_command

 @<do_command+0>

 THD*thd

● But --vars did not allow to directly access local variables, moreover, at
function entry their values may be of no interest

● SoI needed need a way to create probe for a specific line of code, where
some local variable already had the value set

● --line option shows what lines we can “probe”

www.percona.com

Adding uprobe to MariaDB with perf: problems

17

● --line option shows what lines we can “probe”. You add probe for function
entry and then:

[openxs@fc29 ~]$ sudo perf probe -x /home/openxs/dbs/maria10.3/bin/mysqld
--line do_command
<do_command@/mnt/home/openxs/git/server/sql/sql_parse.cc:0>
 0 bool do_command(THD *thd)
 1 {
 2 bool return_value;
 3 char *packet= 0;
 ...
 10 enum enum_server_command command;
 11 DBUG_ENTER("do_command");
...

154 packet[packet_length]= '\0'; /* safety */

157 command= fetch_command(thd, packet);
...

www.percona.com

Adding uprobe to MariaDB with perf: --line

18

● So I tried to attach probe to line 157 (relative to do_command start) and
print local variable as it is there::

[openxs@fc29 ~]$ sudo perf probe -x /home/openxs/dbs/maria10.3/bin/mysqld
'do_command:157 packet:string'

Added new events:

 probe_mysqld:do_command (on do_command:157 in
/home/openxs/dbs/maria10.3/bin/mysqld with packet:string)

...

[openxs@fc29 ~]$ sudo perf record -e 'probe_mysqld:do_command*' -aR
^C[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 1.254 MB perf.data (14 samples)]

[openxs@fc29 ~]$ sudo perf script > /tmp/trace.out

www.percona.com

Adding uprobe to the line inside function with perf

19

● Let me check the script (raw data) output from perf::

[openxs@fc29 ~]$ cat /tmp/trace.out
 mysqld 15268 [002] 24115.673783: probe_mysqld:do_command:
(556c4297eb11) packet_string="select 2"
 mysqld 15268 [002] 24118.361743: probe_mysqld:do_command:
(556c4297eb11) packet_string="select 1"
 mysqld 15245 [001] 24125.281206: probe_mysqld:do_command:
(556c4297eb11) packet_string="SET time_zone='+00:00'"
 mysqld 15245 [001] 24125.281431: probe_mysqld:do_command:
(556c4297eb11) packet_string="SHOW STATUS LIKE 'Uptime'"
 mysqld 15245 [001] 24125.282427: probe_mysqld:do_command:
(556c4297eb11) packet_string=""
 mysqld 15268 [002] 24127.401669: probe_mysqld:do_command:
(556c4297eb11) packet_string="select user, host from mysql.user"
...

● Now, when you’ll get every other row of code instrumented in P_S?
● Use perf and dynamic probes in the meantime...

www.percona.com

It works!

20

● Dynamic tracing of disk I/O with perf:
○ What to trace: file I/O, block device I/O, fsync calls, something else?

sudo perf record -e block:block_rq_insert -a -g -- sleep 30

○ More details (by Brendan Gregg) here
● Dynamic tracing of memory allocations with perf:

○ What if we want to trace all calls to malloc and record size and pointer?
Depends on allocator library used, but more or less:
sudo perf probe -x /lib/x86_64-linux-gnu/libc.so.6 'malloc
size=%di:s64'

○ There are problems. More details in this blog post

● Dynamic tracing of C++ class members:
○ What if we want to trace return value of ha_heap::records_in_range?

○ More details in this blog post
○ Mangled names and, shit happens, virtual member functions.

www.percona.com

Dynamic tracing with perf: practical examples

21

https://youtu.be/0enuunciPoA
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://mysqlentomologist.blogspot.com/2020/05/dynamic-tracing-of-memory-allocations.html
http://mysqlentomologist.blogspot.com/2020/07/dynamic-tracing-of-c-class-member.html

www.percona.com

perf - basic usage as a profiler
● Check my post, “perf Basics for MySQL Profiling”, for details and references,

but basic minimal steps are:
○ Make sure perf-related packages are installed (perf with RPMs) for your kernel:

sudo apt-get install linux-tools-generic
○ Make sure debug symbols are installed and software is built with -fno-omit-frame-pointer
○ Start data collection for some time using perf record:

sudo perf record -a [-g] [-F99] [-p `pidof mysqld`] sleep 30
Run your problematic load against MySQL server

○ Samples are collected in `pwd`/perf.data by default
○ Process samples and display the profile using perf report:

sudo perf report [-n] [-g] --stdio

● Alternatively, run in foreground and interrupt any time with Ctrl-C:
[root@centos ~]# perf record -ag
^C

● Or run in background and send -SIGINT when done:
[root@centos ~]# perf record -ag &
[1] 2353
[root@centos ~]# kill -sigint 2353

● Let’s see how it works alive… (demo). We’ll see perf top, perf record -g etc
22

http://mysqlentomologist.blogspot.com/2017/01/perf-basics-for-mysql-profiling.html

www.percona.com

Perf - Call Graphs (hanging at “statistics” case)
● This real life case got me converted from P_S to profiling with perf in 2016...
● See my blog post for details and outputs (perf record -a -g -F99 sleep 60):

 | |--71.70%-- srv_conc_enter_innodb(trx_t*)
 | | ha_innobase::index_read(...)
 | | handler::index_read_idx_map(...)
 | | handler::ha_index_read_idx_map(...)
 | | join_read_const(st_join_table*)
 | | join_read_const_table(THD*, ...)
 | | make_join_statistics(JOIN*, ...)
 | | JOIN::optimize_inner()
 | | JOIN::optimize()
 | | mysql_select(THD*, ...)
 ...

● We can see that time to do SELECT is mostly spent waiting to enter InnoDB
queue while reading data via index (dive) to get statistics for the optimizer
(see Bug #83912 for what P_S shown me back then)

● We can see where the time is spent by kernel and other processes (-a)

23

http://mysqlentomologist.blogspot.com/2017/01/perf-basics-for-mysql-profiling.html
https://bugs.mysql.com/bug.php?id=83912

www.percona.com

perf - Call Graphs (recent slow purge 10.4 case)
Use -g option of perf record to get call graphs/backtraces with perf, then:

openxs@ao756:~/dbs/maria10.4$ sudo perf report --stdio
...

40.15% 0.16% mysqld mysqld [.] row_purge_record_func
 |
 --39.99%--row_purge_record_func
 |
 |--39.36%--row_purge_reset_trx_id
 | |
 | |--35.72%--row_search_on_row_ref
 | | |
 | | --35.60%--btr_pcur_open_low
 | | |
 | |
--35.51%--btr_cur_search_to_nth_level_func
 | | |
 | |
|--16.88%--btr_search_info_update_slow
 | | | |
 | | |
--16.74%--btr_search_build_page_hash_index
 | | | |
 | | |
--15.58%--ha_insert_for_fold_func

... 24

www.percona.com

perf - more problems and challenges

● Large size of perf.data at high sampling rates:
-rw------- 1 openxs openxs 33553324 тра 15 00:25 perf.data_io

The above is for block I/O only, not I/O bound case:
sudo perf record -e block:block_rq_insert -a -g -- sleep 60

● Overhead of writing by perf record to the file (what if you
profile I/O and are already I/O bound?)

● The answer is… eBPF and safe summarizing in the probe
(in kernel context)

● For complex software like MariaDB perf produces too
large data sets to study efficiently

● The answer is filtering (with grep) and … visualisation as
Heat Maps or (for -g) Flame Graphs

25

http://www.brendangregg.com/perf.html#HeatMaps
http://www.brendangregg.com/perf.html#FlameGraphs

www.percona.com

A lot about eBPF: extended Berkeley Packet Filter
● eBPF is a tiny language for a VM that can be executed inside Linux Kernel. eBPF instructions can

be JIT-compiled into a native code. eBPF was originally conceived to power tools like tcpdump
and implement programmable network packed dispatch and tracing. Since Linux 4.1, eBPF
programs can be attached to kprobes and later - uprobes, enabling efficient programmable tracing

● Brendan Gregg explained it here:

26

https://lwn.net/Articles/740157/
http://www.brendangregg.com/ebpf.html

www.percona.com

A lot about eBPF
● Julia Evans explained it here:

1. You write an “eBPF program” (often in C, Python or use a tool that generates that program
for you) for LLVM. It’s the “probe”.

2. You ask the kernel to attach that probe to a kprobe/uprobe/tracepoint/dtrace probe
3. Your program writes out data to an eBPF map / ftrace / perf buffer
4. You have your precious preprocessed data exported to userspace!

● eBPF is a part of any modern Linux (4.9+):
4.1 - kprobes
4.3 - uprobes (so they can be used on Ubuntu 16.04+)
4.6 - stack traces, count and hist builtins (use PER CPU maps for accuracy and efficiency)
4.7 - tracepoints
4.9 - timers/profiling

● You don’t have to install any kernel modules
● You can define your own programs to do any fancy aggregation you want, so

it’s really powerful
● You’d usually use it with some existing bcc frontend. Check some here.
● Recently a very convenient bpftrace frontend was added

27

https://jvns.ca/blog/2017/07/05/linux-tracing-systems/#ebpf
https://ebpf.io/
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#1-builtins-2
https://github.com/iovisor/bcc
http://mysqlentomologist.blogspot.com/2020/09/bcc-tools-for-disk-io-analysis-and-more.html

www.percona.com

Examples of bcc tools in action: tplist
● https://github.com/iovisor/bcc/blob/master/tools/tplist.py
● This tool displays kernel tracepoints or USDT probes and their formats
● It was applied it to MariaDB 10.3.x on Fedora 29 (Fedora package!):

[openxs@fc29 mysql-server]$ s udo /usr/share/bcc/tools/tplist -l
/usr/libexec/mysqld | more

b'/usr/libexec/mysqld' b'mysql':b'connection__done'
b'/usr/libexec/mysqld' b'mysql':b'net__write__start'
b'/usr/libexec/mysqld' b'mysql':b'net__write__done'
b'/usr/libexec/mysqld' b'mysql':b'net__read__start'
b'/usr/libexec/mysqld' b'mysql':b'net__read__done'
b'/usr/libexec/mysqld' b'mysql':b'query__exec__start'
b'/usr/libexec/mysqld' b'mysql':b'query__exec__done'
...

● We get these USDT as they were added to the code when DTrace static
probes were added. See also readelf -n.

● MariaDB does NOT care about DTrace any more, but probes are there
(--DENABLE_DTRACE=1). Not in MySQL 8.0.1+ it seems

28

https://github.com/iovisor/bcc/blob/master/tools/tplist.py

● https://github.com/iovisor/bcc/blob/master/tools/mysqld_qslower.py
● Depends on query__start and query__done UDST probes!
● USAGE: mysqld_qslower PID [min_ms]
● By defaults logs queries slower than 1 millisecond. Set to 0 to have all

queries logged. Does not seem to work with prepared statements!
● It was applied to MariaDB 10.3.18 (distro package) on Fedora 29:

[openxs@fc29 tmp]$ sudo /usr/share/bcc/tools/mysqld_qslower `pidof
mysqld`
Tracing MySQL server queries for PID 4642 slower than 1 ms...
TIME(s) PID MS QUERY
...
0.698114 5955 3546.324 INSERT INTO sbtest3(k, c, pad)
VALUES(501130,
'64733237507-56788752464-03679578678-53343296505-31167207241-1060305090
1-641486789
4.251413 5955161.330 INSERT INTO sbtest3(k, c, pad) VALUES(503408,
'77033721128-77169379656-02480595704-40686156292-96586631730-5187073598
2-037677765

● Now run sysbench and measure the impact of this logging vs other options :)

www.percona.com

Examples of bcc tools in action: mysqld_qslower

29

https://github.com/iovisor/bcc/blob/master/tools/mysqld_qslower.py

Examples of bcc tools in action: uprobe with trace
● https://github.com/iovisor/bcc/blob/master/tools/trace.py
● Trace a function and print a trace message based on its parameters, with an

optional filter.
● It was applied to MariaDB 10.3.x on Fedora 29 to get queries without any

UDST used (by adding uprobe). As usual I attached to function
(dispatch_command) and printed its 3rd parameter:
nm -na /home/openxs/dbs/maria10.3/bin/mysqld | grep dispatch_command
…
00000000005c5180 T _Z16dispatch_command19enum_server_commandP3THDPcjbb
sudo /usr/share/bcc/tools/trace
'p:/home/openxs/dbs/maria10.3/bin/mysqld:_Z16dispatch_command19enum_serv
er_commandP3THDPcjbb "%s" arg3'
PID TID COMM FUNC -
26140 26225 mysqld
_Z16dispatch_command19enum_server_commandP3THDPcjbb b'select 2'

● It seems you have to use mangled name and access to structures may not
work easily. See this my blog post for some more details.

30

https://github.com/iovisor/bcc/blob/master/tools/trace.py
http://mysqlentomologist.blogspot.com/2020/01/dynamic-tracing-of-mariadb-server-with.html

What about bpftrace?
● https://github.com/iovisor/bpftrace
● bpftrace (frontend with programming language) allows to do what I did with

trace utility above, but easier and more flexible
● You need recent enough kernel (not available on Ubuntu 16.04), 5.x.y ideally

31

https://github.com/iovisor/bpftrace
https://www.mankier.com/8/bpftrace
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2019/10/dynamic-tracing-of-mariadb-server-with.html

Study at least one-liner bpftrace examples

● https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.
md

● Command line options
-l | -e ‘program’ | -p PID | -c CMD | --unsafe | -d | -dd | -v

● Listing probes that match a template:
bpftrace -l 'tracepoint:syscalls:sys_enter_*'

● Tracing file opens may look as follows:
bpftrace -e 'tracepoint:syscalls:sys_enter_openat \
{ printf("%s %s\n", comm, str(args->filename)); }'

● Syntax is basic:
probe[,probe,...] [/filter/] { action }

● For me the language resembles awk and I like it
● More from Brendan Gregg (as of August 2019) on it is here
● “Bpftrace is wonderful! Bpftrace is the future!”

32

https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://github.com/iovisor/bpftrace/blob/master/docs/tutorial_one_liners.md
https://opensource.com/article/19/8/introduction-bpftrace
https://www.joyfulbikeshedding.com/blog/2019-01-31-full-system-dynamic-tracing-on-linux-using-ebpf-and-bpftrace.html#what-trace-points-are-available-what-should-i-trace

Getting stack traces with bpftrace

● See ustack() etc in the Reference Guide
● This is how we can use bpftrace as a poor man’s profiler:

sudo bpftrace -e 'profile:hz:99 /comm == "mysqld"/
{printf("# %s\n", ustack(perf));}' > /tmp/ustack.txt

● We get output like this by default (perf argument adds address etc):
...
mysqld_stmt_execute(THD*, char*, unsigned int)+37
dispatch_command(enum_server_command, THD*, char*,
unsigned int, bool, bool)+5123
do_command(THD*)+368
tp_callback(TP_connection*)+314
worker_main(void*)+160
start_thread+234

● See my recent blog post for more details on what you may want to do next :)

33

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md#16-ustack-stack-traces-user
https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
http://mysqlentomologist.blogspot.com/2020/01/using-bpftrace-on-fedora-29-more.html

Performance impact of pt-pmp vs perf vs bpftrace

● Consider sysbench (I/O bound) test on Q8300 @ 2.50GHz Fedora 29 box:
sysbench /usr/local/share/sysbench/ oltp_point_select.lua
--mysql-host=127.0.0.1 --mysql-user=root --mysql-port=3306 --threads=12
--tables=4 --table-size=1000000 --time=60 --report-interval=5 run

● I’ve executed it without tracing and with the following (compatible?) data
collections working for same 60 seconds:
1. sudo pt-pmp --interval=1 --iterations=60 --pid=`pidof mysqld`

2. sudo perf record -F 99 -a -g -- sleep 60
[perf record: Woken up 17 times to write data]
[perf record: Captured and wrote 5.464 MB perf.data (23260 samples)]

3. sudo bpftrace -e 'profile:hz:99 { @[ustack] = count(); }' >
/tmp/bpftrace-stack.txt
[openxs@fc29 tmp]$ ls -l /tmp/bpftrace-stack.txt

-rw-rw-r--. 1 openxs openxs 2980460 Jan 29 12:24 /tmp/bpftrace-stack.txt

● Average QPS: 27272 | 15279 (56%) | 26780 (98.2%) | 27237 (99.87%)

34

Flame Graphs

● http://www.brendangregg.com/flamegraphs.html
● Flame graphs are a visualization (as .svg file to be checked in browser) of

profiled software, allowing the most frequent code-paths to be identified
quickly and accurately.

● The x-axis shows the stack profile population, sorted alphabetically (it is not
the passage of time), and the y-axis shows stack depth. Each rectangle
represents a stack frame. The wider a frame is, the more often it was present
in the stacks. Check some examples (on screen :)

● CPU Flame Graphs ← profiling by sampling at a fixed rate. Check this post.
● Memory Flame Graphs ← tracing malloc(), free(), brk(), mmap(),

page_fault
● Off-CPU Flame Graphs ← tracing file I/O, block I/O or scheduler
● More (Hot-Cold, Differential, pt-pmp-based etc),
● https://github.com/brendangregg/FlameGraph + perf + ... or bcc tools like

offcputime.py
35

http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.percona.com/blog/2019/11/20/profiling-software-using-perf-and-flame-graphs/
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/offcpuflamegraphs.html
http://www.brendangregg.com/blog/2015-02-26/linux-perf-off-cpu-flame-graph.html
https://www.percona.com/blog/2020/01/15/using-flame-graphs-to-process-outputs-from-pt-pmp/
https://github.com/brendangregg/FlameGraph
https://github.com/iovisor/bcc/blob/master/tools/offcputime.py

Flame Graphs - simple example for off-CPU

● Created based on these steps (while oltp_update_index.lua was running):

[openxs@fc29 FlameGraph]$ sudo /usr/share/bcc/tools/offcputime -df 60 >
/tmp/out.stacks
WARNING: 459 stack traces lost and could not be displayed.
[openxs@fc29 FlameGraph]$./flamegraph.pl --color=io --title="Off-CPU
Time Flame Graph" --countname=us < /tmp/out.stacks > ~/Documents/out.svg

●
● I’ve searched for “futex” and related frames are highlighted

36

www.percona.com

Problems of dynamic tracing: summary
● root/sudo access is required
● Debugging the program that is traced …
● Limit memory and CPU usage while in kernel context
● How to add dynamic probe to some line inside the function (doable in perf)?
● C++ (mangled names, class members, virtual member functions) and

access to complex structures (bpftrace needs headers)
● eBPF tools rely on recent Linux kernels (4.9+). Use perf for older versions!
● -fno-omit-frame-pointer must be used everywhere to see reasonable stack

traces
● -debuginfo packages, symbolic information for binaries?
● More tools to install (and maybe build from source), but ftrace is there...
● Lack of knowledge and practical experience with anything but gdb and perf
● I had not (yet) used eBPF tools for real life Support issues at customer side

(gdb and perf are standard tools for many customers already).

37

www.percona.com

Am I crazy trying these and suggesting to DBAs?
● Quite possible, maybe I just have too much free time :)
● Or maybe I do not know how to use Performance Schema properly :)
● But I am not alone… Markos Albe also speaks about perf and eBPF/bcc

tools, Daniel Black writes and speaks about perf....
● perf probes are used for tracing Oracle RDBMS! There is enough

instrumentation there for almost everything, but still...
● Dynamic tracers are proven tools for instrumenting OS calls (probes for

measuring I/O latency at microsecond precision, for example)
● Dynamic tracing of RDBMS userspace is a topic of growing interest, with a

lot of RAM and workloads that are often CPU-bound these days.
● For open source RDBMS like MariaDB there is no good reason NOT to try to

use dynamic probes (at least while UDST or Performance Schema
instrumentations are not on every other line of the code :)

● eBPF (with bcc tools and bpftrace) makes it easier (to some extent) and
safer to do this in production

38

https://www.percona.com/community-blog/2020/02/05/finding-mysql-scaling-problems-using-perf/
https://www.percona.com/community-blog/2020/02/05/finding-mysql-scaling-problems-using-perf/
https://db-blog.web.cern.ch/blog/luca-canali/2016-01-linux-perf-probes-oracle-tracing

www.percona.com

Thank you!
Questions and Answers?

Please, search and report bugs at:

https://jira.mariadb.org

39

https://jira.mariadb.org

