
Seth Shelnutt
Chief Technology Officer

MyTile
A Cloud-Native Storage Engine based on TileDB

9/14/2020

Outline

● What is TileDB
● MyTile Overview
● Use Cases of MyTile
● Internal Usage of MyTile At TileDB, Inc.

3The Universal Data Engine

What is TileDB?

4MyTile

What is TileDB?

TileDB the universal data engine
It is built upon built on multi-dimensional arrays

This enables storing and accessing:
● Dense arrays (e.g., satellite images)
● Sparse arrays (e.g., LiDAR, genomics)
● Dataframes (any data in tabular form)
● Key-values (mappings between keys and values)

5

Store all your Data Eliminate deployment hassles

Model any structured data
and slice any segment or
region directly from the

cloud

Spin up a Jupyter notebook
and scale out computations

- all serverless

Share data sets+ code
within & beyond
organizational

boundaries. Manage
access & audit activities.

Analyze with any tool Share at planet-scale

TileDB Universal Data Engine

Efficient integration

Seamlessly access data
with any data science
tool and perform ML &

analytics at scale

TileDB CloudOpen Source

MyTile

6MyTile

TileDB Core Features

● Cloud storage (AWS S3, Google Cloud Storage, Azure Blob Storage)
● Tiling (i.e., chunking) for fast slicing
● Columnar
● Multiple compression, encryption and checksum filters
● Fully multi-threaded implementation
● Parallel IO
● Data versioning (rapid updates, time traveling)
● Array metadata
● Array groups
● Embeddable C++ library

7MyTile

Immutability is important for cloud object-stores

● Time Traveling is native due to MVCC Design
● Every write is immutable

○ Updates are treated as writes
○ Crash safe with object immutability

● Consolidation mechanism supported
○ Combine fragments, purge history
○ Reduced disk space
○ Can improve performance

TileDB Features (Contd.)

8MyTile

ACID support:
● All writes in TileDB are atomic
● Consistency is determined by the storage location

○ Eventual consistency of cloud object stores is natively handled
○ TileDB always returns valid results, never corrupt or invalid results

● Isolation and durability are inherent in the MVCC design
○ Every write gets its own fragment (folder) with a unique with a timestamp + uuid
○ Transactions and locking are not needed

■ conflicting writes at the same timestamp are handled by the UUID of the write

TileDB Features (Contd.)

9The Universal Data Engine

MyTile

10MyTile

MyTile Overview

MyTile is a MariaDB Storage Engine based on TileDB Embedded
It inherits all functionality of TileDB

● Uses the TileDB Embedded C++ Library
● TileDB Arrays can be on remote cloud object store (S3, GCS, Azure)
● Fully dynamic discovery of existing arrays

○ SELECT * from `s3://my-bucket/my-array`. It just works!
○ Complete interoperability with existing arrays and other APIs

● Current maintained outside MariaDB source, hope to upstream soon

11MyTile

Query Optimizations

● Fully supports condition pushdown
○ Increased performance for large number of query types
○ Predicates on dimensions are intercepted and pushed to TileDB

● Multi-range read optimization built in
○ High performance joins between TileDB and any other tables!
○ Supports bulk key access for MRR optimization for joins

12MyTile

Transactions and Locking

● Completely lock free multi-reader/multi-writer design
○ TileDB storage engine and format natively handle conflicts
○ No need for any locking inside MariaDB

● ACID-like support without any locking or transactions
○ Eventual consistency of cloud object stores main limitation

● Transactions only supported for bulk insertion of data
○ No general transaction support at this time
○ TileDB itself does not have transactions
○ On roadmap for development to support only single mariadb server transactions

13MyTile

Embedded Usage

● MyTile is able to be built and bundled into a embedded MariaDB instance
● Customers use this for data exploration and manipulation

○ Works great to showcase sql in a jupyter notebook without a server
● Embedded MariaDB can be used by any client that links against mariadb c

connector
○ Opens the door for anyone to run sql queries on remote datasets without

needing a server setup

14MyTile

Backups

● TileDB arrays are self contained, simply copy the folder of the array
○ An array is always in a consistent state even in the middle of a write

● Hot backups and incremental backups are simple
○ Consistent and straightforward structure means its easy to copy only parts of

an array after a given timestamp (last backup)
○ Rsync or aws s3 sync commands work great with TileDB arrays

15MyTile

What MyTile Is Not

● A general replacement for InnoDB
● Designed for highly transactional datasets
● Designed for full text searching and indexing (Mroonga)

16MyTile

Storage Engine Comparison - InnoDB

Advantages compared to InnoDB

● Cloud Native, store data on S3, Azure, GCS and more
● Many more compressors (zstd, lz4, RLE and more)
● Significantly reduced write amplification
● Supports time traveling
● Better performance at terabyte scale

Disadvantages:

● InnoDB is a very mature and battle tested storage engine
● InnoDB has great support for replication and backups through tools like

mariabackup/xtrabackup
● InnoDB has significantly better single record insert performance

17MyTile

Storage Engine Comparison - MyRocks

Advantages compared to MyRocks

● Cloud Native, store data on S3, Azure, GCS and more
● Interops with any TileDB Integration or API

○ no special format or semantics
● Additional compressors such as run length encoding, double delta and more

Disadvantages:

● MyRocks is more mature, with additional MariaDB statistics and parameters
● MyRocks has support for MariaDB transactions and checkpoints

18The Universal Data Engine

Use Cases

19The Universal Data Engine

Use Case: #1 Geospatial - AIS

● AIS ship location data
● Data is stored as a Sparse TileDB Array
● Employees access data via:

○ Python
○ MariaDB
○ Embedded MariaDB

● Use the best tool for the job
● Efficient SQL pushdown of bounding box

20The Universal Data Engine

Use Case: #2 Time Series

● Common datasets
○ Stock market, asset trading
○ Stored as sparse TileDB array

● Customer uses embedded mariadb
○ Allows fast and easy data exploration

● Uses spark, dask and other for large
production jobs
○ Experimenting with distributed SQL via

a "cluster" of independent MariaDB
servers with custom query sharding.

21The Universal Data Engine

Use of MyTile
Internally

22

TileDB, Inc Offerings

A powerful open-source

storage engine that works

with all data science tools

1. TileDB Embedded

Captures all data via arrays

Fast and cloud-optimized

Data versioning built-in

Open-source

A scalable and easy-to-use

collaboration and data

analytics platform

2. TileDB Cloud

Serverless SQL and lambdas

Jupyter notebooks

Sharing with access control

Commercial product

MyTile

Solve the storage and data management pains and enable scalable compute

23MyTile

Serverless SQL

MyTile is used to power TileDB Cloud's serverless SQL offering

● We run MariaDB servers in an autoscale cluster
● Allow users to dynamically access with their data with a simple query string
tiledb.cloud.sql.exec("select avg(a) FROM `tiledb://TileDBInc/quickstart_dense`")
● Returns data directly as a pandas dataframe (python) or JSON (any

language)

Thank you!

tiledb.com

hello@tiledb.comgithub.com/TileDBInc

@tiledb

