
Easier Plugin Design with Rust
Clevis in MariaDB
Trevor Gross

1



Background: Why Rust?

2



What is it?

● Compiled to assembly
● No garbage collector
● Prevents the errors you 

shouldn’t make but do
● Compiler guarantee: 

zero runtime undefined 
behavior

3
Tip: return isn’t needed if the last line is the return value

Sample Rust

C Equivalent



Who’s Using It?

4

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

https://github.com/microsoft/windows-drivers-rs



Lifetimes in C

5



Lifetimes in C

6



Lifetimes in Rust

7



Lifetimes in Rust

8

This says:
x must be valid for (at least) ‘a

A Thing will exist for some time. This 
says: “call a Thing’s lifetime ‘a”

Fix the issue: make x something that lives 
as long as Thing (x_ref does)



Aliasing & Validity

9



How Does it Know?

Every item has:

● The data itself (owner)
● 0 to ∞ immutable (const) 

references (&)
● OR one mutable reference 

(&mut)
● Never both!
● References cannot outlive 

the owner

10

created owner
created &

used &

used &

used &mut



The Result

Eliminated:

● Over/underflow
● Segfaults/trap (with the help of 

bounds checking)
● Data races (aliasing)
● Use after free / double free

11



Rust & MariaDB

12



User-Defined Functions

https://mariadb.org/writing-user-defined-functions-in-rust/
13



User-Defined Functions

14



Easy & Hard

The easy parts:

● Interfacing with the existing codebase
● Designing the APIs
● Using the Rust APIs
● Building and testing

The hard part:

● Understanding the existing APIs enough to define guaranteed behavior

15



An Example with Encryption

● You need to read 10+ calls deep to 
figure out destination buffer size

● encrypted_length is sometimes 
ignored

● src and dst would, in some cases, 
overlap

16



17

An Example with Encryption



18

An Example with Encryption



19

An Example with Encryption



Clevis & Tang

Key Generation:

● Remote server (Tang) holds a key
● The client (Clevis or MariaDB) requests a public key
● The client performs ECDH to create an encryption key

Key Retrieval:

● The client provides the key ID to Tang
● Encryption key can be recovered by performing ECDH with a short-lived key

Information is transmitted using JOSE standards

20



Clevis & Tang

21



What is Working

● Encryption / Key Management plugin interfaces
● Function (UDF) plugin interfaced
● System Variables
● sql_service
● Logging
● CMake build system integration (dynamic, not yet static)
● Unit testing within Rust
● Preliminary integration testing with mariadb-test

22



What is Next

● Getting Clevis plugin to a shippable state
● Further plugin support:

○ Authentication
○ Data types (macaddr, macaddr8, cidr)

● Create Rust plugins without building against MariaDB

23



Easier UDF Interfaces

24



Discussion Period

25


