
Daniel Lenski
Amazon RDS for MySQL/MariaDB core engine team
Wednesday, 4 October 2023

Improving the security and
usability of TLS in MariaDB

Slide 2

About me

● In the Amazon RDS open-source
core team at Amazon Web
Services for 2 years.

● Lots of contributions to
free/open-source software over
20+ years
(see dlenski.github.io)

● Core developer of the
OpenConnect VPN client

Monty visited us in May 2022 :-)

https://aws.amazon.com/rds/
https://dlenski.github.io/
https://gitlab.com/openconnect/openconnect/-/graphs/master?ref_type=heads
https://gitlab.com/openconnect/openconnect

Slide 3

Outline

● Background:
– What is TLS?
– Why do we need TLS?

● A critical look at TLS in MariaDB
– Protocol and code problems
– Resulting vulnerabilities
– User experience problems

● Proposed solutions
● Questions?

Slide 4

Background
What is TLS?

Why do we need it?

How have these needs changed over time?

Slide 5

Introduction to TLS

● Transport Layer Security is an
Internet standard protocol

● Designed to provide privacy
and security to network
protocols

● Known as TLS since 1999
● Earlier iterations were called

SSL (Secure Sockets Layer)
● The name SSL is still widely

used to refer to TLS, including
in MySQL and MariaDB

Improving security with each revision of the standard!

● Not just fixing known vulnerabilities
● Thinking about newer and more sophisticated threat

models

Slide 6

● TLS promises that, if it is used correctly, it will provide:
– End-to-end encryption and authentication

Applications can create a confidential channel over an untrusted network,
which only the endpoints can read or write to.

– Peer authentication

Client can cryptographically verify that they’ve established a channel with
the intended server.

● For application developers: TLS aims to be a drop-in replacement for
unencrypted network connections (like TCP)

What does TLS do?

Slide 7

What were our privacy and security concerns?

● Many applications started adding support for TLS around 2000-2005
(including MySQL)

● What was the threat model that users were worried about in 2005?

● ⚠️ Everything was plaintext. If you could see our packets, you could read
them.

Opportunistic
Eavesdropper

She’s running Firesheep
to steal Facebook and
webmail logins.

Simple Automated
Censor

The school’s routers look for:
● BitTorrent packets
● HTTP requests that appear

to download .EXE files

… and inject TCP resets to
kill them.

https://mariadb.com/kb/en/old-mysql-versions/#mysql-41
https://en.wikipedia.org/wiki/Threat_model
https://en.wikipedia.org/wiki/Firesheep
https://en.wikipedia.org/wiki/TCP_reset_attack

Slide 8

Changing threats and requirements over time

● Since then…

● Ever-increasing computing power…

● More and more of everything is online…

● More study of Internet protocols…

● Better-organized and better-funded attackers…

● More sophisticated threats to privacy and security on the Internet.

● Approaches that were “good enough” back in 2005 no longer are.

● Applications and protocols need to keep up.

Slide 9

How have our our privacy and security concerns changed?

● Consolidation of network control
● Major revelations about Internet surveillance by governments (2013)

● We should be thinking about pervasive attackers, including:
– Intelligence agencies
– Censorship agencies
– Internet service providers
– Datacenters
– Collaborations among the above

https://en.wikipedia.org/wiki/2010s_global_surveillance_disclosures

Slide 10

What can pervasive attackers do?

● Track any network connection statefully
● Inspect, log, inject at every layer below TLS
● Fingerprint for vulnerable software versions
● Research and discover vulnerabilities and exploit them without

public disclosure
● Inject attacks targeted against individuals or groups

https://en.wikipedia.org/wiki/Deep_packet_inspection
https://en.wikipedia.org/wiki/Tailored_Access_Operations

Slide 11

Defending against modern threat model

● Lots to worry about, but no need to
despair.
– Consistent expert consensus: TLS,

implemented and used correctly, is a
very strong defense.

● Pervasive attackers exploit
vulnerabilities
– Use well-funded, well-tested,

standards-compliant, up-to-date TLS
libraries.

● Pervasive attackers can do machine-
in-the-middle attacks (MITM)
– Clients must verify servers’ identities

http://www.wired.com/2013/09/black-bud
get-what-exactly-are-the-nsas-cryptanaly
tic-capabilities

http://www.wired.com/2013/09/black-budget-what-exactly-are-the-nsas-cryptanalytic-capabilities/
http://www.wired.com/2013/09/black-budget-what-exactly-are-the-nsas-cryptanalytic-capabilities/
http://www.wired.com/2013/09/black-budget-what-exactly-are-the-nsas-cryptanalytic-capabilities/

Slide 12

What is a MITM attack on TLS?

● Machine in the middle sees a client connecting to a server with TLS
● Attacker completes 2 TLS handshakes: 1 with client, 1 with server
● Attacker can read, relay, and modify traffic as if unencrypted
● Client must verify server’s identity; TLS gives tools for this.

thinks it has an end-to-end encrypted
channel with the server, but actually it is

with the MITM thinks it has an end-to-end encrypted
channel with the client, but actually it is
with the MITM

👀

Inspect, log,
track, inject

🔓

(Adapted from
docs of mitmproxy)

https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks

Slide 13

What do users expect from TLS?

Slide 14

TLS/SSL is a brand Pages from
MariaDB Corp,
Skype, Amazon
shopping, F5,
Canadian credit card
consortium…
advertising their
products’ security.

Slide 15

What do users expect from this brand?

● If an application says that TLS/SSL is in use…
● Users expect data to be transmitted without possibility of

eavesdropping, forgery, or interference.
● If these expectations are violated, then

– “TLS is supported and enabled” is
– Incomplete at best
– Misleading and dangerous at worst.

● Users expect to be protected against modern threat models

Slide 16

TLS needs to be easy to use and hard to misuse

● Many users know they want TLS, but not how to use it well
● Make it as easy as possible to use TLS securely by default with:

– Good design.
– Secure-by-default configuration, fail-secure behavior.
– Good documentation

– Including communication about changes that affect security.

● Remove options or features that make it too easy to use software
insecurely.

Slide 17

Critical look at TLS in MariaDB
Overarching technical problem

Specific vulnerabilities

User experience problems
Specific examples

Slide 18

Switching to TLS securely needs careful design

● MariaDB starts with a plain TCP socket and then switches to using TLS
on the same TCP socket.

● This needs careful design:
● Backwards-compatibility with peers who can’t do TLS (if necessary)
● TLS-capable peers are protected against downgrade attacks
● Leak as little information as possible in pre-TLS exchanges

https://en.wikipedia.org/wiki/Opportunistic_TLS

Slide 19

Pre- and post-TLS application state

● Any data or configuration exchanged before switching to TLS should be
thrown out after the handshake.

● If the state of the application after the TLS handshake is influenced by
the state before the handshake…
● Information leakage
● Downgrading or forgery

Slide 20

How to switch to TLS correctly

● Design the protocol before
writing code, not the other way
around. Will it meet the
requirements?

● Use language features and good
program design to

– Ensure pre-TLS and post-TLS
state are isolated

– No global vars, no preexisting
“god object”

– Make code as compact and self-
contained as possible

static CLIENT_CONN *greet_client_and_setup_TLS(
 int tcp_socket, const SERVER_TLS_CONTEXT *t, bool allow_insecure)
{
 send_server_greeting_packet(tcp_socket);
 CLIENT_GREETING *g = recv_pkt(tcp_socket);

 if (g->wants_TLS) {
 int tls_sess = TLSLib_do_handshake_as_server(tcp_socket, t);

 /* Don't trust the plaintext/pre-TLS greeting packets: redo! */
 free(g);
 send_server_greeting_packet(tls_session);
 g = recv_pkt(tls_session);

 /* Create our CLIENT_CONN (app state object) from scratch */
 CLIENT_CONN *c = malloc(sizeof(*c)));
 *c = (CLIENT_CONN){.greeting=g, .fd=tls_session, .transport="TLS"}; // C99
 return c;
 }

 if (allow_insecure) {
 CLIENT_CONN *c = malloc(sizeof(*c)));
 *c = (CLIENT_CONN){.greeting=g, .fd=tcp_socket, .transport="TCP"}; // C99
 return c;
 }

 error("Refusing request for insecure connection!");
 return NULL;
}

int accept_client_connection(
 int tcp_socket, SERVER_TLS_CONTEXT *t, bool allow_insecure)
{
 /* Greet client and secure the transport layer */
 CLIENT_CONN *cc = greet_client_and_setup_TLS(
 tcp_socket, t, allow_insecure);

 /* Do the application-layer authentication */
 application_authentication(cc);

 /* ... */
}

This should default to
False in both client and
server implementations.

Server code:

Slide 21

Problems with how MariaDB switches to TLS

0)Flawed design for switching to TLS.

1)Global state and spaghetti code. Hard to read, test, or simplify.

2)No separation of concerns between code for TLS setup and
application setup.

3)No separation of pre-TLS and post-TLS state.

4)Large amount of code. sql_acl.cc is 15,000 lines long, and
includes code for two different authentication methods in addition to
TLS setup and general application setup.

Slide 22

Vulnerabilities

● Pervasive attackers can watch for MariaDB connections and…

1)Undetectably downgrade to plaintext (MDEV-28634 and CONC-656)

2)Or undetectably MITM the TLS (CONC-656)

3)Mislead and DOS clients by sending forged server errors, with no
TLS awareness (CONC-648)

4)Fingerprint clients for location-specific character sets (CONC-654)

5)Fingerprint clients for specific software versions (CONC-654) and
launch other as-yet-unknown attacks

●First two can be defended by using --ssl-verify-server-cert

– … but non-default and hard to configure, so a lot of users don’t

https://jira.mariadb.org/browse/MDEV-28634
https://jira.mariadb.org/browse/CONC-656
https://jira.mariadb.org/browse/CONC-656
https://jira.mariadb.org/browse/CONC-648
https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/CONC-654

Slide 23

A resulting vulnerability

● CONC-648: Client improperly trusts
errors sent before TLS handshake
(reported 6 June 2023)

● Clients using TLS should not trust
messages allegedly sent by the
server before the TLS handshake.

200 lines later… have we switched to TLS yet?

https://jira.mariadb.org/browse/CONC-648

Slide 24

CONC-648: Client improperly trusts errors sent before TLS handshake

● A client connects, with TLS:
– mariadb --ssl-verify-
server-cert
mariadb.server.com

● MITM injects fake error packet:
ERROR 1815 (HY000): Internal error: Client will accept
this error as genuine even if running with --ssl --ssl-
verify-server-cert, and even though this error is sent
in plaintext PRIOR TO TLS HANDSHAKE.

● Connector/C library reports this
as a real error from the real
server, with no indication that it
was sent pre-TLS:

● Clients do need to report
certain errors before TLS
handshake is complete:
– Those error conditions are

determined by the client

– They should not involve trusting
information sent by the server

https://jira.mariadb.org/browse/CONC-648
https://mariadb.com/kb/en/err_packet

Slide 25

CONC-648: Client improperly trusts errors sent before TLS handshake

● Immediate risks?
● 😌 Can’t be directly used to extract

application-level data
● 😨 Trivial to use for DOS attacks…

– Inject ER_ACCESS_DENIED_ERROR
(“wrong password”) to convince
clients to stop retrying.

– Inject ER_GET_TEMPORARY_ERRMSG
(“temporary failure”) errors to
convince clients to keep retrying

– Inject ER_CON_COUNT_ERROR /
ER_OUT_OF_RESOURCES to get clients
to connect to another server.

https://jira.mariadb.org/browse/CONC-648

Slide 26

CONC-648: Client improperly trusts errors sent before TLS handshake

● Future risks?

● As long as this bug exists…
● The MariaDB protocol cannot evolve

in a way where clients would
automatically take consequential
actions based on error messages
sent by the server.

https://jira.mariadb.org/browse/CONC-648

Slide 27

CONC-648: Client improperly trusts errors sent before TLS handshake

● I created a tiny fix for this
issue, Connector/C PR#223

● It has been up since 12 June
● Revised based on feedback

from Sergei Golubchik and
Andrew Hutchings.

https://jira.mariadb.org/browse/CONC-648
https://github.com/mariadb-corporation/mariadb-connector-c/pull/223

Slide 28

Vulnerabilities due to badly-designed redundant switch to TLS

● Reported 30 June, a protocol-level problem:
– CONC-654: Clients send too much info before TLS handshake
– MDEV-31585: … and the servers requires it to be sent

● Results from poor design in the protocol for switching to TLS:
– Servers expect clients to send a near-identical greeting packet once

in plaintext (before TLS handshake), and once over TLS

https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/MDEV-31585

Slide 29

CONC-654 & MDEV-31585: too much required info in pre-TLS exchanges

● Clients reveal their
“capabilities”

● Clients reveal their
preferred character
set in plaintext

https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/MDEV-31585

Slide 30

CONC-654 & MDEV-31585: too much required info in pre-TLS exchanges

● Immediate risks?
● Many opportunities for fingerprinting specific client versions

– Easy to iterate through every release, or even every commit, of
Connector/C library.

– Build it.
– See how its default capability bits change.
– Pervasive attackers may know of undisclosed vulnerabilities in specific

client versions, and target them based on this fingerprint.

● Geographic fingerprinting based on character sets.

https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/MDEV-31585

Slide 31

CONC-654 & MDEV-31585: too much required info in pre-TLS exchanges

● This is a protocol flaw involving
redundant exchanges, and
different interpretations of them.

● It cannot be fixed in a fully-
backwards-compatible way in
either the client or the server
alone.

● Connector/C PR#227 and
server PR#2684 (submitted 3 July,
revised based on feedback)
– Client and server can negotiate a

new “v2 TLS handshake”
– Other compatible client libraries

are interested in supporting this as
well (see mysql.net #1342 from 9
July)

v2 handshake
● The server greeting packet indicates to the client

that the server knows how to handle the v2
handshake.

● The client reveals nothing in its plaintext greeting
packet other than the fact that it wants to use TLS.

https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/MDEV-31585
https://github.com/mariadb-corporation/mariadb-connector-c/pull/227
https://github.com/MariaDB/server/pull/2684
https://github.com/mysql-net/MySqlConnector/issues/1342

Slide 32

CONC-656: Clients reveal if they can be undetectably MITM’ed

● Connector/C clients reveal in
plaintext whether or not they are
verifying the server’s certificate.

● Protocol-level problem, subset of
CONC-654

● CONC-656: Clients reveal if they
can be undetectably MITM’ed

🔎
Wireshark showed this bit as “unused”
It should actually be labeled Client verifies
server certificate
I fixed this in wireshark MR!11498

https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/CONC-654
https://jira.mariadb.org/browse/CONC-654
https://gitlab.com/wireshark/wireshark/-/merge_requests/11498

Slide 33

CONC-656: Clients reveal if they can be undetectably MITM’ed

● Many deployed MariaDB clients
are not actually verifying
servers’ TLS certificates even if
they are using TLS for
encryption.

● Clients literally reveal whether or
not they can detect the basic
TLS MITM attack.

● Risks? Potentially massive.
● If pervasive attackers already

know about this vulnerability…
● They’re already opportunistically

decrypting tons of connections
from MariaDB clients that aren’t
verifying certs…
– … without anyone noticing it.

https://jira.mariadb.org/browse/CONC-654

Slide 34

CONC-656: Clients reveal if they can be undetectably MITM’ed

● Although this is a subset of
CONC-654…

● This can be fixed purely with
a client-side change.

● Could be done in one line,
but I added 10 lines of
explanatory comments

● Connector/C PR#228
(submitted Jul 12)

https://jira.mariadb.org/browse/CONC-654
https://github.com/mariadb-corporation/mariadb-connector-c/pull/228

Slide 35

MDEV-28634: Silently downgrade from TLS to no TLS

● Reported in 2020 (not by me)
● Connector/C clients using TLS will

silently switch to a plaintext
connection if the server doesn’t
support TLS

● Trivial downgrade attack
● Exists in this form since at least

2015 (this Con/C commit or
this one)

Few-line fix for this in Connector/C PR#224
(submitted by me, June 15)

https://jira.mariadb.org/browse/MDEV-28634
https://github.com/mariadb-corporation/mariadb-connector-c/commit/23895fbd4#diff-4339ae6506ef1fb201f6f836085257e72c191d2b4498df507d499fc30d891005
http://4ef74979969ac9339d0d42c11a6f26632e6776f1/
https://github.com/mariadb-corporation/mariadb-connector-c/pull/224

Slide 36

MDEV-28634: Silently downgrade from TLS to no TLS

● Is this a technical problem, or a user experience problem?
● Neither mariadb --help nor the online docs mention that this option

might result in a plaintext connection:

https://jira.mariadb.org/browse/MDEV-28634
https://mariadb.com/kb/en/mariadb-command-line-client/#-ssl

Slide 37

MDEV-28634: Silently downgrade from TLS to no TLS

● It’s a massive violation of user
expectations for the --ssl
option to allow a downgrade to
plaintext with no user input.

● If users ask for TLS/SSL, they
definitely don’t want a plaintext
connection.

● The Jira submitter made this case
clearly, 3 years ago:

●

●

● I’ve been making a fuss about it
more recently.

https://jira.mariadb.org/browse/MDEV-28634

Slide 38

It’s too hard to use TLS securely with MariaDB: Insecure defaults

● MariaDB server accepts non-TLS clients by default
(REQUIRE_SECURE_TRANSPORT=OFF)

● MariaDB Connector/C accepts non-TLS servers by default
– … and by default it won’t even try TLS even if the server advertises it

● MariaDB Connector/Python is basically the same; very thin wrapper
● Yes, the mariadb CLI started defaulting to --ssl in 2022 (MDEV-27105)

– … but still no server certificate validation by default

– … and MDEV-28634 makes --ssl alone even more ineffectual.

https://jira.mariadb.org/browse/MDEV-27105
https://jira.mariadb.org/browse/MDEV-28634

Slide 39

It’s too hard to use TLS securely with MariaDB: The “SSL” option really isn’t

● Launching the client with mariadb --ssl ought to mean:
– Connect to a server using TLS
– Verify its certificate
– Abort if the server doesn’t support TLS or if you can’t verify its cert

● What it actually means…
– Connect to a server and use TLS if the server offers it
– Don’t verify the server’s certificate (and make that clear to attackers,

CONC-656)
– And silently fallback to plaintext if the server doesn’t support TLS (

MDEV-28634)

https://jira.mariadb.org/browse/CONC-656
https://jira.mariadb.org/browse/MDEV-28634

Slide 40

It’s too hard to use TLS securely with MariaDB: The “SSL” option really isn’t

● If you actually want protection
against the modern threat
model, you need:
– mariadb --ssl-verify-
server-cert

● Okay, what if you use mariadb
--ssl-ca=trustedCAcert.pem?
– Does this imply --ssl, or --ssl-
verify-server-cert?

Slide 41

It’s too hard to use TLS securely with MariaDB: Configuring certificates is too hard

● Here’s what the docs say:

● Technically quite accurate
● If you understand TLS very well, you might be able to configure MariaDB

correctly based on this.
● But if not, it’s very hard to succeed by experimenting!

https://mariadb.com/kb/en/securing-connections-for-client-and-server/

Slide 42

It’s too hard to use TLS securely with MariaDB: Configuring certificates is too hard

● Let’s say we have a typical 3-layer cert chain
● server-cert.pem (signed by ca.pem, file includes private key)

subject=C = CA, L = Vancouver, O = Company, OU = Division, CN = mariadb-server.company.com
 issuer=C = US, O = "Certy McCertface", OU = Intermediate Divison, CN = Certy McCertface Intermediate CA
notBefore=Apr 23 23:59:20 2023 GMT
notAfter=Apr 24 00:59:20 2060 GMT

● ca.pem (signed by root.pem)
subject=C = US, O = "Certy McCertface", OU = Intermediate Divison, CN = Certy McCertface Intermediate CA
 issuer=C = US, O = "CertyCorp", OU = Root Division, CN = CertyCorp Root CA
notBefore=Apr 13 23:53:36 2023 GMT
notAfter=Apr 14 00:53:36 2061 GMT

● root.pem (self-signed)
subject=C = US, O = "CertyCorp", OU = Root Division, CN = CertyCorp Root CA
 issuer=C = US, O = "CertyCorp", OU = Root Division, CN = CertyCorp Root CA
notBefore=Mar 31 23:52:11 2022 GMT
notAfter=Apr 1 00:52:11 2062 GMT

Slide 43

It’s too hard to use TLS securely with MariaDB: Configuring certificates is too hard

● Things users might try
● Start the server:

– mariadbd --server-cert=server-cert.pem

– mariadbd --server-cert=server-cert.pem --ssl-ca=ca.pem

– mariadbd --server-cert=server-cert.pem --ssl-ca=server-cert.pem

– mariadbd --server-cert=server-cert.pem --ssl-ca=root.pem

● Start the client:
– mariadb --ssl-ca=server-cert.pem

– mariadb --ssl-ca=ca.pem

– mariadb --ssl-ca=root.pem

Slide 44

It’s too hard to use TLS securely with MariaDB: Configuring certificates is too hard

● All of those server options will start the server without errors or
warnings.

● All but one of those combinations of combination will result in client
errors, either:
– ERROR 2026 (HY000): TLS/SSL error: unable to get issuer certificate

– ERROR 2026 (HY000): TLS/SSL error: unable to get local issuer certificate

● Will users understand these errors?

● Will they guide users towards finding the right configuration?
● Or will they just give up?

Slide 45

It’s too hard to use TLS securely with MariaDB: Configuring certificates is too hard

● MariaDB is deferring to the
configuration semantics and the
error messages of the TLS library.

● Server needs to advertise a
complete cert chain. Abort
startup unless it is correctly
specified.

● If the client can’t verify a server’s
certificate, it should explain why
clearly.

● Better application specific error
checking and error messages.

● You specified a server certificate
and private key, but not a complete
certificate chain anchored in a
self-signed root. See --ssl-ca/--
ssl-capath options. Aborting server.

● Could not verify server’s
certificate using the root(s) of
trust specified with --ssl-ca. <Show
unverified gaps in the chain.>

Slide 46

Solutions
Improve the code

Improve the protocol

Backwards-compatibility should be less important than…
Actual security

Manageable complexity

Slide 47

Improve the code

● Vulnerabilities like CONC-648, CONC-654 + MDEV-31585, CONC-656
have been in the code for 10+ years

● I expect there are plenty of others.
● It’s easy to find vulnerabilities.
● Most of these have taken me far longer to explain and advocate for,

than to discover.
● The code for setting up TLS in MariaDB appears to be too complicated

to easily maintain, and never simplified or audited.

https://jira.mariadb.org/browse/MDEV-31585

Slide 48

Improve the protocol

● The switch-to-TLS protocol used by MySQL/MariaDB is uniquely bad.
● I’ve never seen another one that includes, and requires, sending so

much redundant meaningful before and after the switch.
● There is no fix that will solve the security problems and preserve

client/server compatibility across the ecosystem.

● It’s going to have to be replaced.

● Better to do it sooner rather than later.

Slide 49

Improve the code and the protocol

● … by merging my PRs! 😬
● Connector/C PRs by dlenski, server PRs by dlenski

● In particular, Connector/C PR#227 and server PR#2684 for handshake
information leakage.
– I received a good amount of feedback early on
– I responded to it and improved the PRs
– I haven’t had any actionable feedback on this in 2.5 months.

https://github.com/mariadb-corporation/mariadb-connector-c/pulls?q=author%3Adlenski+is%3Aopen
https://github.com/mariadb/server/pulls?q=author%3Adlenski+is%3Aopen
https://github.com/mariadb-corporation/mariadb-connector-c/pull/227
https://github.com/MariaDB/server/pull/2684

Slide 50

Backwards-compatibility

● I think backwards-compatibility is
generally very important.

● But “backwards-compatibility” seems
to be the common excuse for
– Retaining a lot of insecure-by-default

behavior for far too long.
– Ossification of a lot of code.

Slide 51

Backwards-compatibility isn’t a good excuse

● “Everything is not working fine” for users who are using mariadb
--ssl, and silently downgraded to plaintext.

● They say they want the security of the TLS/SSL brand.
● But they are not getting it.
● Many of them would be far happier for their connections to stop

working with a new software version …
● … than to find out that their usage of MariaDB databases had

been compromised for years due to “backwards-compatibility.”
● Especially if the new release includes clear help messages and

documentation about what’s changed, why, and how to adapt.

Slide 52

Manage complexity

● In MariaDB, there seems to be a strong tendency towards solving
problems by making the software more complex.

● Existing feature has a problem? Add a new non-default option!
– --ssl has no certificate verification? Add --ssl-verify-server-cert.

● Sometimes more complexity is necessary, but it’s usually a
necessary evil.

● The level of complexity in MariaDB in this area is unmanageable.

Slide 53

Simplify things

● Better defaults for options
– Make require_secure_transport=ON the default in the server.

– Make --ssl-verify-server-cert the default in Connector/C.

● Remove bad or obsolete options or features entirely
– If there’s a good replacement, inconveniencing some users is okay
– OpenConnect removed an option in 2016:

Totally insecure against MITM

Manual verification based on key fingerprints Use PKI correctly (scales)

https://gitlab.com/openconnect/openconnect/-/commit/6c95e85f154f2ee24b8914ab6c0ffe555152ca7f

Slide 54

Thank you

● Thanks for attending this.
● I know that this is a very critical take on MariaDB
● I’m highlighting these issues because I think they’re important
● I think MariaDB can be a much better tool and product if they’re

addressed.

● Thank you to my colleagues for support, inspiration, and feedback on
this presentation.

● Questions, discussion?

Slide 55

My question?

• What if you use mariadb --ssl-ca=trustedCAcert.pem?
– Does this imply --ssl, or --ssl-verify-server-cert?

– Is that implemented in the connector library, or in the client application?

Slide 56

Book recommendation

● “A Philosophy of Software Design” by John Ousterhout (2018)
● This is an amazing book, and not too long!
● Largely about managing complexity in software

You should avoid configuration parameters as much as possible. Before exporting a configuration
parameter, ask yourself: “will users (or higher-level modules) be able to determine a better value than
we can determine here?” When you do create configuration parameters, see if you can provide
reasonable defaults, so users will only need to provide values under exceptional conditions.

Realize that working code isn’t enough. It’s not acceptable to introduce unnecessary
complexities in order to finish your current task faster. The most important thing
is the long-term structure of the system.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

