
MariaDB Replication – Fantastically Flexible
and Fragile

Kristian Nielsen

MariaDB Foundation

MariaDB Server Fest 2024



About me

Kristian Nielsen <knielsen@knielsen-hq.org>
Chief Architect Replication, MariaDB Foundation
Author of MariaDB group commit, Global Transaction ID
(GTID) and parallel replication
MySQL and MariaDB developer since 2005
Free Software developer since 1990(ish)



MariaDB replication

At the highest level,

What makes MariaDB replication so fantastic?

Or to put another way

How come users put up with it?



MariaDB replication

At the highest level,

What makes MariaDB replication so fantastic?

Or to put another way

How come users put up with it?



MariaDB replication

At the highest level,

What makes MariaDB replication so fantastic?

Or to put another way

How come users put up with it?



MariaDB replication

At the highest level,

What makes MariaDB replication so fantastic?

Or to put another way

How come users put up with it?



MariaDB replication

Replication’s main strength is its flexibility
logical replication, statement or row based
Unrestricted multi-source replication
Master-master replication
Redundant path (-gtid-skip-duplicates)
Arbitrary replication hierarchies
Filtering of replicated queries, master and slave side
Different schema on master and slave
Different triggers on slave from master
. . .



MariaDB replication

There is a solution for every problem
You (hopefully) don’t need to use all of it

But the functionality is there if you will need it

Advanced users are doing crazy and scary stuff!
Replication a killer feature of MariaDB by providing a
powerful solution that scales with the application.

Though it can be painful . . .



MariaDB replication

There is a solution for every problem
You (hopefully) don’t need to use all of it

But the functionality is there if you will need it

Advanced users are doing crazy and scary stuff!
Replication a killer feature of MariaDB by providing a
powerful solution that scales with the application.

Though it can be painful . . .



The pain. . .

2024-05-03 7:59:16 50 [ERROR] Error running
query, slave SQL thread aborted. Fix the
problem, and restart the slave SQL thread with
"SLAVE START". We stopped at log
’master-bin.000001’ position 446661; GTID
position ’0-1-605,1-1-598,2-1-600’

Want the power without the pain!



Logical, statement-based replication

UPDATE table_with_1G_rows
SET flag=NULL

WHERE pending IS NULL;

Should this really replicate X gigabytes of disk-page redo logs
(physical replication)?

Or should this really replicate X gigabytes of key values
(row-based logical replication)?

For a 50-character query. . .



Logical, performant replication

Slave performance must keep up with master
Master scalability improvements useless otherwise

Optimistic parallel replication a success of MariaDB
Handles conflicts using same mechanisms as master

This ensures correctness

Allows to extract maximum parallelism
Makes it transparent to application (in-order)
Generally applicable, no application changes needed



Logical, transparent replication

ALTER TABLE t ENGINE=blackhole;

Logical replication is transparent
Users can read the binlog, understand how it works
Users can manipulate the way replication happens

Filters, multi-source, modified schemas, etc.
Transparency empowers the user ⇒ flexibility

So what is the catch?



Parallel replication triggers InnoDB corner cases

Logical replication is very complex to implement.

Example: MDEV-20605, something like:

T1: UPDATE ... WHERE pk=10
T2: DELETE ... WHERE pk=10
T4: DELETE ... WHERE pk=10
T3: INSERT ... SET pk=10

The T4 DELETE starts before the T3 INSERT
T3 commits first
Bug was that the row was not deleted



User expectations

I want to make it so that replication does not break!
Need to fix the bugs!
Performance also important, combat slave lag
Users will be able to break things themselves

But server must help them not to

My fear is that users start to expect replication to break



Binlog and InnoDB redo log

Two separate transactional logs
InnoDB WAL for tablespace modifications
Binlog for replication events
Two is not better than one!

This is an example of unnecessary complexity
Need a “single source of truth”
InnoDB WAL well optimized
Binlog naive implementation, mostly undeveloped
Crash-recovery is enormously expensive

Due to need for 2pc between InnoDB and binlog



Binlog and InnoDB redo log 2

Server crash could leave InnoDB and replication out of sync
Trx exists in InnoDB but not in binlog
Or exists in binlog but not in InnoDB
Slave will diverge and eventually fail

Requires two fsync() for every commit
Prepare trx in InnoDB
Sync InnoDB WAL, ensure durable
Write and sync binlog, ensure durable
Commit InnoDB

Crash recovery will roll back InnoDB trx not in binlog



MDEV-34705 binlog-in-engine

MDEV-34705 is a project to fix this and make InnoDB the single
source of truth.

Storage engine implements binlog interface
InnoDB writes binlog files to tablespaces
Reuse existing InnoDB infrastructure

Redo logging, tablespaces, buffer pool, checkpointing

Legacy binlog will be kept for backwards compatibility
Design write-up in MDEV-34705 Jira
Prototype implementation

Github branch knielsen_binlog_in_engine

Comments on design welcome!



MDEV-34705 benchmarks

Large speed-up in durable configuration.



MDEV-34705 benchmarks 2

Speed-up even in non-durable configuration.



MDEV-34705 benchmarks 3

Crash-safe no longer requires durable configuration. Even
larger impact when slow fsync() / low concurrency



MDEV-34705 future work

A new binlog format opens up new possibilities
Remove restriction that transactions must be binlogged as
single consecutive event group

Bad for large transactions

Opportunistic slave apply even before commit on master
Integrate GTID update with engine

Avoid mysql.gtid_slave_pos update

. . .



Other pain-points

DDL (and long-running queries in general) cause slave lag
-binlog-alter-two-phase partial solution

Needs improvement, not rely on no-conflict guarantee
Also need better support for out-of-order

DDL that runs longer on slave, non-DDL

Easier slave provisioning
New users must wonder “Why so difficult?”
Should be as easy as LOAD DATA FROM MASTER

Something like MDEV-7502 might help



Conclusion

MariaDB replication’s main strength is its flexibility
To some extent this is also its Achilles Heel

With flexibility comes inherent complexity
Always keep in mind that “complex” does not equal “good”

Avoid needless complexity as a main design criteria
Replication is great! But too complex, and too fragile

Main challenge to improve on this
Regain user’s confidence in the product

Questions?


