
Discover what Columnstore Can Really
Do for You
Roman Nozdrin
@MariaDB Day Brussels Feb 2025

Agenda

● Columnstore overview

● Columnstore use cases

○ Features that enables the use cases

COLUMNSTORE
OVERVIEW

SQL

MASSIVELY PARALLEL, SHARED NOTHING ARCHITECTURE

SHARED NOTHING DISTRIBUTED DATA STORAGE

● Query received and parsed by MariaDB frontend
● Storage Engine Plugin breaks down query in primitive

operations and distributes across all nodes
↓ Primitives ↓
Intermediate
↑↑Results↑↑

BI Tool SQL Client Custom Big
Data App

USERS

APP

● Primitives processed on each node
● One thread working on a range of rows
● Execute column restrictions and projections
● Execute group by/aggregation against local data
● Each Node work on Primitives in parallel and fully distributed
● Each primitive executes in a fraction of a second
● Return intermediate results to MariaDB

COLUMN
PRIMITIVES

DBRoot1

● Workernode
● Controllernode
● PrimProc

● ExeMgr
● WriteEngine
● DMLProc
● DDLProc

MariaDB Server
Server

Columnstore
Processes

Plugin

Local / S3 /
GlusterFS / NFS

Storage

4

COLUMNSTORE USE
CASE 1

Challenge

● 10TB to 20TB
databases

● 3TB+ raw
uncompressed
daily imports

● On premise
closed
networks

Background

● Looking to save
money & retain
more data while
maintaining
performance
compared to the
closed-source
OLAP

Replacing closed-source OLAP with MariaDB Columnstore

Features used

● Fast versatile data importing
● Partitioning for tables data
● Distributed report queries execution

DATA IMPORTING

CPIMPORT

Fastest way to ingest data directly into storage; bypasses SQL interface

With cpimport data is loaded without impacting the querying capability of the cluster
and is available after the data load process is completed

Prerequisite: the table needs to be created beforehand

cpimport -s ',' -E '"' test table1 table1.csv

zcat t1.csv.gz | cpimport -s ',' -E '"' test t1

mariadb -q -e 'SELECT * FROM table1' -N db2 |
/usr/bin/cpimport \

 -j501 -s '\t' -f STDIN

Example loading data from data file using cpimport

Example loading data from another application using cpimport

Example loading data from standard input and mariadb client using cpimport

MODE 3 IMPORTING

Expects files to be prepared for each
node and they will be injected as-is

Fastest mode, but more complex

Parallel Distributed Load
Loaded from Each node separately and only

Concurrent Loads can be Executed on Multiple
Nodes for the same table

Used to manually load data to a specific node
or to all nodes

cpimport -m3 db1 table1 -l /path/table1.tbl

Partitioned Source File

MariaDB
Node 1

MariaDB
Node 2

MariaDB
Node 3

cpimportcpimport cpimport

REMOTE IMPORTING

LOAD DATA LOCAL INFILE can be run from a remote (non-database) machine
LOAD DATA LOCAL INFILE needs a user with proper credentials to access the
remote database and the FILE privilege to execute LOAD DATA
LOAD DATA LOCAL INFILE has its own enable/disable flag in the MariaDB
Server configuration.
Even if LOAD DATA LOCAL INFILE is wrapped in a transaction there is a way
to ensure that cpimport is invoked by setting
columnstore_use_import_for_batchinsert [ON|OFF|ALWAYS]

Load data directly from S3

● Data is natively read from an S3 bucket by cpimport

● Or data is read from an S3 bucket with AWS CLI and the output is piped into
cpimport

● The AWS CLI tool must be installed and configured on the host

BULK LOADING FROM S3

aws s3 cp --quiet s3://mdb01/sms_bulk.csv - | cpimport test sms -s ","

cpimport test sms -s ","cpimport test sms sms_bulk.csv -s "," -y $S3_ACCESS_KEY_ID
-K $S3_SECRECT_ACCESS_KEY -t mdb01

Load data directly from S3

● Data is natively read from an S3 bucket by UDF using CMAPI

BULK LOADING FROM S3

MariaDB [mytest]> CALL columnstore_info.load_from_s3("s3://dleeqadata", "1g/lineitem.tbl", "mytest",
"lineitem", "|", "", "");
+--+
| columnstore_dataload(bucket, filename, dbname, table_name, terminated_by, enclosed_by, escaped_by) |
+--+
| {"success": true, "inserted": "6001215", "processed": "6001215"} |
+--+
1 row in set (16.243 sec)

● See https://jira.mariadb.org/browse/MCOL-5013

https://jira.mariadb.org/browse/MCOL-5013

PARTITIONING

● Each column stored independently in
8M rows logical measure called an Extent

● An Extent is physically stored as collection
of blocks

● A block is 8K Bytes

● String columns > 8 characters store
indexes in the main column file and actual
values in separate dictionary files

● Collectively, the column files and dictionary
files for an extent form a Partition

● Partitions stored in a hierarchical structure
organized by segments (i.e. folders)

● ExtentMap - meta store maps file
structure/location to database schema as well
as information used for partitioning

● By default the data is compressed8K bytes

Block 1 Block 2 Block n...

Block

Extent
8M rows
8MB to
64 MB

Segment

Partition

Segment 4

Segment 3

Segment 1

Segment 2

Extent 1

Extent 2

PARTITION, SEGMENT, EXTENT AND BLOCKS

COLUMN

14

PARTITION MANAGEMENT

Minimum and maximum values for each extent form a partition
schema if data is loaded in semi-order

Partitions can be displayed for a table and column

ColumnStore horizontally partitions extents per 8 million rows

Partitions can be disabled, enabled, or purged to
remove rows corresponding to matched extents

Disabled values are hidden, not deleted

Operations can be performed by extent map minimum,
maximum values or by extent id

DISPLAYING PARTITION INFORMATION

Display partitions by a given table and column

select calShowPartitions('orders','orderdate');
+--+
|calShowPartitions('orders','orderdate') |
+--+
| Part# Min Max Status
0.0.1 1992-01-01 1998-08-02 Enabled
0.1.2 1998-08-03 2004-05-15 Enabled
0.2.3 2004-05-16 2010-07-24 Enabled |
+--+
1 row in set (0.05 sec)

● idbPartition(column) -the three part partition id (Directory.Segment.DBRoot)
● idbPm(column) -the PM where the physical row resides
● idbSegmentDir(column) - the lowest level directory id for the column file

containing the physical row
● idbSegment(column) - he number of the segment file containing the physical

row
● idbLocalPm() The PM from which the query was launched. This function will

return NULL if the query is launched from a standalone UM

LEVERAGING PARTITIONS WITH SQL FUNCTIONS

select * from 'orders' where idbPartition(orderdata) = '0.2.3';

Full list at https://mariadb.com/kb/en/columnstore-information-functions/

COLUMNSTORE USE
CASE 2

Challenge

● Run SQL on
20TB tables
reducing 90 to
less than 8
hours

● Fast data
migration from
the existing
storage

Background

● A customer
used to run
OLAP queries
using OLTP
engine that
took 90 days

Features used

● Disk-based SQL operations
● Fast versatile data importing
● Distributed queries execution

RESEARCH WORKLOAD

DISK-BASED SQL
OPERATIONS

● Enable features with commands

● Optionally set a path for temporary files

● Or set the values in /etc/columnstore/Columnstore.xml directly

DISK-BASED GROUP BY AND JOIN CONFIGURATION

sudo mcsSetConfig HashJoin AllowDiskBasedJoin Y
sudo mcsSetConfig RowAggregation AllowDiskBasedAggregation Y
sudo mcsSetConfig SystemConfig SystemTempFileDir $PATH

sudo mcsSetConfig SystemConfig SystemTempFileDir $PATH

COLUMNSTORE USE
CASE 3

Challenge

● Run analytics
SQL preserving
their current
application
patterns with
enormous
INSERT rate to
avoid using
ETL from OLTP
engine to OLAP

Background

● Online
marketing
solution based
on manually
sharded
MariaDB cluster

Features used

● INSERT Cache
● Fast DELETE
● Distributed queries execution

WEB MARKETING SOLUTION

INSERT CACHE

● Enable in MariaDB server config for columnstore(Ubuntu 24.04)

● Works for tables created when the feature is active
● 600 record singleton import test (Innodb 2.2s to 2.7s = ~245 TPS)

INSERT Cache

sudo echo “columnstore-cache-inserts=ON” >> /etc/my.cnf.d/columnstore.cnf
sudo systemctl restart mariadb

LocalStorage w/ Cache Inserts - 1.75x to 3x slower
Start: 17:41:39.456573208 0
InnoDB Done: 17:41:41.752143571 2.291949568
Columnstore Done: 17:41:46.314279229 6.854710546

LocalStorage without Cache Insert - 35x slower
Start: 17:53:13.739659922 0
InnoDB Done: 17:53:16.293950582 2.548612200
Columnstore Done: 17:54:42.321429012 88.578447000

FAST DELETE

● Enable in Columnstore.xml

Fast DELETE

sudo mcsSetConfig WriteEngine FastDelete y
systemctl restart mariadb-columnstore / mcs cluster restart

CROSS ENGINE JOIN

CROSS ENGINE JOINS

Cross Engine Joins allow ColumnStore to access and
query non-ColumnStore tables in MariaDB Server
Implemented in the ColumnStore engine rather than
MariaDB server
Row data can also be updated from columnar using
a cross-engine JOIN
Need to correctly set up cross engine join user. This
was discussed in ColumnStore Configuration lesson

Manage dimension
tables as InnoDB,

and fact tables
as ColumnStore

Common Use Case

CROSS ENGINE JOIN CONFIGURATION

sudo mcsSetConfig CrossEngineSupport Host mcs1
sudo mcsSetConfig CrossEngineSupport Port 3306
sudo mcsSetConfig CrossEngineSupport User cross_engine
sudo mcsSetConfig CrossEngineSupport Password Cr0ss_eng!ne_passwd

The password may be encrypted with a key
Generate a key using cskeys command-line tool (all nodes should have the same key;
it should only be readable to the ColumnStore system user)

Encrypt the password with the cspasswd utility before adding it to the configuration

CROSS ENGINE JOIN WHAT IF…

11.120 sec

CREATE TABLE IF NOT EXISTS INNODB_TABLE (a DECIMAL(12, 2), b int, INDEX idx_b_a (b, a)) ENGINE=innodb

PARTITION BY KEY(b,a) PARTITIONS 4;

INSERT INTO INNODB_TABLE SELECT ROUND(RAND() * 1000000, 2),ROUND(RAND() * 10000, 0) FROM

seq_1_to_32000000;

select b, sum(a) from INNODB_TABLE group by b;

13.562 sec

select b, sum(a) from

SAME_MCS_TABLE where 0=1 group by b

 UNION ALL

 select b, sum(a) from INNODB_TABLE where b between 0 AND 2500 group by b UNION ALL

 select b, sum(a) from INNODB_TABLE where b between 2501 AND 5000 group by b UNION ALL

 select b, sum(a) from INNODB_TABLE where b between 5001 AND 7500 group by b UNION ALL

 select b, sum(a) from INNODB_TABLE where b between 7501 AND 10000 group by b;

CROSS ENGINE JOIN WHAT IF…
select s_name, count(*) as numwait

from

(select * from mcs_schema.supplier, mcs_schema.lineitem l1, mcs_schema.orders, mcs_schema.nation

 where

 s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and s_nationkey = n_nationkey

 and 0=1

 UNION ALL

 select * from innodb_schema.supplier, innodb_schema.lineitem l1, innodb_schema.orders, innodb_schema.nation

 where s_suppkey = l1.l_suppkey and o_orderkey = l1.l_orderkey and l1.l_receiptdate > l1.l_commitdate

 and exists(

 select * from innodb_schema.lineitem l2

 where l2.l_orderkey = l1.l_orderkey and l2.l_suppkey <> l1.l_suppkey

)

 and not exists (

 select * from innodb_schema.lineitem l3

 where l3.l_orderkey = l1.l_orderkey and l3.l_suppkey <> l1.l_suppkey and l3.l_receiptdate > l3.l_commitdate

) and s_nationkey = n_nationkey and n_name = 'SAUDI ARABIA'

) tmp group by s_name order by numwait desc, s_name limit 100;

Thank you

