
Deep Dive: InnoDB
Transactions and Write
Paths
Marko Mäkelä
Lead Developer InnoDB
MariaDB plc

Comparing MariaDB Server to the ISO OSI Model

7. Application layer
● Example: HTML5 web application
● Example: apt update;apt upgrade

6. Presentation layer
● XML, HTML, CSS, …
● JSON, BSON, …
● ASN.1 BER, …

5. Session layer
● SSL, TLS
● Web browser cookies, …

Open Systems Interconnection Model
7. Client connection
● Encrypted or cleartext
● Direct or via proxy

6. SQL
● Parser
● Access control
● Query optimization & execution

5. Storage Engine Interface
● BEGIN, COMMIT, ROLLBACK
● Table cursors: open, read, write

Layers of MariaDB Server

https://en.wikipedia.org/wiki/OSI_model

Comparing MariaDB Server to the ISO OSI Model

4. Transport layer
● TCP/IP streams out of IP packets
● Retransmission, flow control

3. Network layer
● router/switch
● IP, ICMP, UDP, BGP, DNS, …

2. Data link layer
● Packet framing, checksums

1. Physical layer
● MAC: CSMA/CD, CSMA/CA, …
● Ethernet, ATM, RS-232, WiFi, …

Open Systems Interconnection Model
4. InnoDB Transaction (undo log)
● Atomic, Consistent, Isolated access

to tables via Locks & Read Views
● Distributed transactions (XA 2PC)

3. InnoDB Mini-transaction (redo log)
● Atomic, Durable multi-page changes
● Page checksums, crash recovery

2. Operating & File System (block cache)
● ext4, XFS, NFS, NTFS, ReFS, …

1. Hardware/Firmware (physical storage)
● HDD, SSD, NVMe, CXL.mem, …

Layers of MariaDB Server

https://en.wikipedia.org/wiki/OSI_model

Diving Deep into Blocks

● Tables can be viewed as a collection of data records and indexes.

○ Heap organized (MyISAM, Aria): Records are stored separately in a heap, and
indexes contain keys along with heap positions (rowid).

○ Index organized (InnoDB): Clustered index records comprise the PRIMARY KEY and
system and user columns. Secondary records include the key and PRIMARY KEY.

● CREATE TABLE t(a INT PRIMARY KEY, b INT UNIQUE, c INT);

○ MyISAM: heap (rowid,a,b,c) and indexes (a,rowid), (b,rowid)

○ InnoDB: indexes (a,DB_TRX_ID,DB_ROLL_PTR,b,c) and (b,a)

Storing Tables in Files of Fixed-Size Blocks (Pages)

‘iso’,9075 ‘jmp’,76 ‘php’,8

● B-tree is a popular page oriented implementation of indexes.
○ Starting from the root page there are n ordered keys (or key prefixes or parts) and n+1

pointers to lower-level (child) pages.
● At the bottom we have leaf pages that contain entire records.
● Example: CREATE TABLE t(a VARCHAR PRIMARY KEY,b INT);

B-tree Basics

‘fi’ ‘i’

‘ai’,2 ‘feb’,2

‘foo’,3 ‘gates’,640 ‘hello’,5

https://en.wikipedia.org/wiki/B-tree

● Allocation bitmaps (at page n·innodb_page_size), file segments (lists of
pages belonging to a “subfile”, such as SEG_TOP, SEG_LEAF of an index)

● Tables: Collections of index trees, each starting at an immovable root page

○ In *.ibd files, the clustered index root page always is 3.
● Core data dictionary tables starting at hard-coded pages in the system

tablespace: SYS_TABLES, SYS_COLUMNS, SYS_INDEXES, SYS_FIELDS
● Transactions: The TRX_SYS page points to undo log header pages, which point

to pages of undo log records of uncommitted or to-be-purged transactions. They
are in undo tablespaces (undo001, undo002, …) or in the system tablespace.

Some Data Structures in InnoDB Tablespace Files

Mini-Transaction Layer

A mini-transaction manages an atomic set of page reads or writes, covered by
page latches (or buffer-fix) and write-ahead log (redo log) for durability.
● An ”optimistic insert” of a record updates several parts of a B-tree leaf page.
● A ”pessimistic insert” will add at least 1 page to the B-tree, splitting the leaf.
● A mini-transaction can modify at most one index B-tree (and 1 undo page)!
● A mini-transaction can read from 2 indexes: secondary, clustered, (undo)

○ Allowing atomic modification of clustered, secondary would lead to lock order inversion
and deadlock between (say) concurrent INSERT and SELECT.

○ Undo log pages are never overwritten; a buffer-fix will suffice for reads.

InnoDB Mini-Transaction Layer

A single-row INSERT transaction involves several mini-transactions:
1. Write undo log and optimistically insert a record into clustered index.

○ If a page split is needed, run another mini-transaction for a pessimistic insert.
2. Insert a record into the first secondary index.

○ If a page split is needed, run another mini-transaction for a pessimistic insert.
3. (Insert a record into each subsequent next secondary index.)
4. Mark the transaction state as committed in the undo log header.

InnoDB Mini-Transaction Layer Example: INSERT

● ”The log is the database”: the data pages are basically just a cache of it.
● The write-ahead log (redo log) defines the state of all persistent InnoDB data

pages, at a specific point of logical time (log sequence number, LSN).
● A checkpoint truncates the start of the log to save space and startup time,

after ensuring no unwritten page changes are older than the checkpoint LSN.
● Recovery will apply the log from the latest checkpoint LSN up to the end.
● The ib_logfile0 is circular; ”the end” is defined by discontinuity.
● The pages will be recovered to match the last complete mini-transaction.

○ Persistent data pages never are newer than the write-ahead log!

InnoDB Mini-Transaction Recovery

Understanding Mini-Transactions and Recovery

Mini-Transaction

Memo:
Locks or
Buffer-Fixes

Index tree latch
(dict_index_t::lock):
covers internal pages

Tablespace latch
(fil_space_t::latch):
allocating/freeing pages

Log:
Page
Changes Data Files

FIL_PAGE_LSN

Write from flush_list

Write-Ahead Log
(ib_logfile0)Redo Log Buffer

(log_sys.buf) Write ahead (of page flush) to log (make durable)

Buffer pool page
buf_page_t::oldest_
modification()

commit

A mini-transaction commit
stores the log position (LSN) to
each changed page.

Recovery will redo changes:
Apply log if the page LSN is
older than the log record LSN.

Log position
(LSN)

InnoDB Transaction Layer

● Optimistically checks locks and changes data on the go; transaction commit
never fails, but a rollback is expensive (revert the undo log and commit).

● Relies on atomic mini-transactions writing one undo log record or updating one
index at a time, or changing the state of a transaction.

● On startup, any pending (incomplete) transactions will be recovered from undo
logs, along with their implicit exclusive locks on any modified records.

● Automatic rollback in the background, except for XA PREPARE, which will wait
for explicit XA COMMIT or XA ROLLBACK from the client (or binlog).

● InnoDB supports non-locking read (multi-versioning concurrency control) by
read view ‘snapshots’ that are based on undo logs.

InnoDB Transaction Layer

● A transaction writes undo log before modifying indexes.

○ Usually row-level: insert/update a record with this primary key.

○ Bulk insert into an empty table may write just ”truncate on rollback”.
● A read view for snapshot isolation identifies the set of committed transactions

at its creation. Non-locking reads may access undo logs of other transactions.
● Once no read view needs the undo logs of some committed transaction, they

may be purged, along with records that have been updated to delete-marked.
Purge also covers DDL recovery, such as unlink() after DROP TABLE.

Reaching ACID (Atomic, Consistent, Isolated, Durable)

A Page View of the InnoDB Transaction Layer

128

B-tree root page B-tree leaf page

DB_ROLL_PTR

TRX_SYS
Page

(ibdata1)

Rollback segment header page

Table
.ibd

Index

History List (to-purge committed)

Uncommitted transactions

(pkN,child page)

(pkM,child page)

B-tree internal page

(pkN1,child page)

(pkN2,child page) (pk2,DB_TRX_ID,DB_ROLL_PTR,cols)

(pk1,DB_TRX_ID,DB_ROLL_PTR,cols)

Undo Log
(linked list of pages)

Undo Log
(linked list of pages)

● Transactional locks and write-ahead undo log are the glue for making the
operations on the rows of tables appear atomic and consistent.

● Modifying a row in a multi-index table is not atomic! MVCC, purge and lock
checks in a secondary index must look up the DB_TRX_ID via PRIMARY KEY.
(To be improved in MDEV-17598.)

● MVCC and purge may retrieve undo log based on DB_ROLL_PTR and construct
an older version until a visible DB_TRX_ID is found.

● BLOB (or TEXT or long VARCHAR) copy-on-write is not atomic; even an UPDATE
may move unaffected columns off-page; see MySQL Bug #62037.

● READ UNCOMMITTED transactions may see truncated BLOB contents.

How Transactions Spray ACID on Mini-Transactions

https://jira.mariadb.org/browse/MDEV-17598
https://bugs.mysql.com/bug.php?id=62037

Finding the Right Balance

● Page latches and row-level locks allow quite some concurrency. Not perfect:
● Before MariaDB 10.3, separate mini-transactions created a transaction and

wrote its first undo record. Pointless and expensive, invisible to others.
● UPDATE and DELETE first execute a locking read, which will create an explicit

lock and release the page latch. MDEV-16232 would allow INSERT-style implicit
locking based on DB_TRX_ID in the record.

● MariaDB can release unmodified pages in a mini-transaction, as well as retain a
buffer-fix to speed up cases that need mini-transaction restart (MDEV-34791).

● Deadlocks due to lock order inversion cannot occur in no-wait cases. Example:
MDEV-37115: “trylock” previous page to optimize reverse index scan.

Finding the Right Level of Atomicity and Concurrency

https://jira.mariadb.org/browse/MDEV-16232
https://jira.mariadb.org/browse/MDEV-34791
https://jira.mariadb.org/browse/MDEV-37115

● 10.3: Read-only TRX_SYS page and lock-free trx_sys.rw_trx_hash table.
Merged insert_undo and update_undo into a single log.

● 10.5: More compact, easier-to-parse log record format. Custom allocator for
recovery. FREE_PAGE records avoid write-back of garbage pages. Doublewrite
buffer is skipped for (re)initialized pages. All page writes are asynchronous,
allowing concurrent fdatasync().

● 10.6: Rewritten latches and locks. Copy-free undo log access via buffer-fixed
pages. Purge coordinator looks up all tables, concurrently with undo truncation.

● 10.8: Variable log block size allows concurrent writes to log_sys.buf; each
writer thread encrypts its own log and computes CRC-32C before writing.

Performance Oriented Data Structure Changes

● Tables are identified by
SYS_TABLES.ID; reassigning it
”detaches” old log

● Indexes on virtual columns are
identified by SYS_INDEXES.ID

● Records are identified by the values
of PRIMARY KEY and updated fields

● BLOB pointers are physical

Logical and Physical Logging in InnoDB

Logical Undo Log
● Type, length, and value starting with

(tablespace_id,page_number).
● Recovery will find files based on

FILE_DELETE, FILE_RENAME,
FILE_MODIFY records.

● To reduce log volume, some
operations (insert a record) use
partially logical log format.

Physical Redo Log (ib_logfile0)

The Circular InnoDB Write-Ahead Log ib_logfile0

● The preallocated file allows fast in-place writes (with O_DIRECT in 10.11+).
● Recovery is possible if all records since the latest checkpoint fit in the file (the

log must not overwrite itself, or the “checkpoint age” must be small enough).
● A too small innodb_log_file_size causes frequent writes of pages from the

buffer pool to advance the checkpoint (write amplification).
● Up to MariaDB Server 10.6, log records are split into 512-byte blocks:

○ One writer at a time appended its records and updated the log block checksum, while
hogging log_sys.mutex and blocking other writers.

○ mariadb-backup --backup could easily keep up, using a simple log block parser.

Performance oriented log format changes (FOSDEM 2022)

● Make each mini-transaction (10 B to 2 MiB) a logical block on its own

○ Log block header shrunk from 96 bits to a 1-bit sequence number.

○ The sequence bit flips each time the circular file ”wraps around”, allowing recovery to
detect the end of log (old garbage written before the latest checkpoint).

● Truly concurrent execution of multiple mtr_t::commit():

○ Concurrent threads compute their own CRC-32C before knowing the LSN.

○ Concurrent memcpy() to log_sys.buf is covered by shared log_sys.latch.

https://archive.fosdem.org/2022/schedule/event/mariadb_innodb/

Optimizing LSN Allocation (MDEV-33515, MDEV-21923)

● Concurrent writes to log_sys.buf are protected by shared log_sys.latch.

○ How to allocate non-overlapping slices of log_sys.buf and the LSN?

○ Original solution: a log_sys.lsn_lock protecting several fields
● Better: A “critical section” of just fetch_add(size + WRITE_TO_BUF)

○ Accurately updates Innodb_log_writes (some users are obsessed with counters).

○ Reads and advances the base of the LSN and the buffer offset by the needed size.

○ Reads also a WRITE_BACKOFF flag (indicating that special handling is needed).

https://jira.mariadb.org/browse/MDEV-33515
https://jira.mariadb.org/browse/MDEV-21923

The Optimized LSN Allocation Logic (MDEV-21923)

 while (UNIV_UNLIKELY((l= write_lsn_offset.fetch_add(size + WRITE_TO_BUF) &
 (WRITE_TO_BUF - 1)) >= buf_size))
 {

/* The following is inlined here instead of being part of
append_prepare_wait(), in order to increase the locality of reference
and to set the WRITE_BACKOFF flag as soon as possible. */
bool late(write_lsn_offset.fetch_or(WRITE_BACKOFF) & WRITE_BACKOFF);
/* Subtract our LSN overshoot. */
write_lsn_offset.fetch_sub(size); /* one call parameter less below */
append_prepare_wait(late, ex); /* ensures WRITE_BACKOFF is cleared */

 }
 // set_for_checkpoint() logic omitted
 return {l + base_lsn.load(std::memory_order_relaxed), l + buf};

[Confidentiality Level]

x86-64 LOCK XADD x86-64 LOCK BTSx86-64 LOCK SUB

https://jira.mariadb.org/browse/MDEV-21923

Main Uses of Exclusive log_sys.latch

● log_sys.get_lsn(); MDEV-21923 removed log_sys.lsn

○ Lock-free log_sys.get_lsn_approx() for adaptive flushing heuristics
● Any writes to ib_logfile0 must shortly freeze the source (log_sys.buf).

○ log_t::write_buf(): reset write_lsn_offset, swap(buf, flush_buf)

○ Outside DDL or checkpoint, log_sys.latch is released before file system access
to allow concurrent writes to the swapped log_sys.buf to resume.

File operations on ib_logfile0 are covered by write_lock, flush_lock in the
group commit implementation (MDEV-21534, MDEV-24341, MDEV-26789).

https://jira.mariadb.org/browse/MDEV-21923
https://jira.mariadb.org/browse/MDEV-21534
https://jira.mariadb.org/browse/MDEV-24341
https://jira.mariadb.org/browse/MDEV-26789

Some Notable Changes in the InnoDB Buffer Pool I/O

● MDEV-27774 removed buf_pool.flush_order_mutex.

○ We must sort when inserting first-time-dirtied blocks to buf_pool.flush_list.

■ Modifying a previously clean page should be rather rare.

○ flush_rbt was removed long ago in MDEV-23399; recovery would sort too.
● MDEV-19738: skip doublewrite for freshly (re)initialized pages
● MDEV-29911: parallel “fake read” threads recover pages based on log records
● MDEV-25948: “bleeding edge” doublewrite, disregarding write-ahead logging
● MDEV-35609 (future task): make use of Linux 6.13 atomic writes

https://jira.mariadb.org/browse/MDEV-27774
https://jira.mariadb.org/browse/MDEV-23399
https://jira.mariadb.org/browse/MDEV-19738
https://jira.mariadb.org/browse/MDEV-29911
https://jira.mariadb.org/browse/MDEV-25948
https://jira.mariadb.org/browse/MDEV-35609

THANK YOU

